

Universidad Católica de Santa María Facultad de Ciencias e Ingenierías Físicas y Formales Escuela Profesional de Ingeniería Mecánica, Mecánica-Eléctrica y Mecatrónica

"DISEÑO E IMPLEMENTACIÓN DE UN MÓDULO DE TURBINA FRANCIS PARA EL LABORATORIO DE TERMOFLUIDOS DE LA ESCUELA PROFESIONAL DE INGENIERÍA MECÁNICA, MECÁNICA-ELÉCTRICA Y MECATRÓNICA"

Tesis presentada por los Bachilleres: Góngora Cruz, Luis Alberto Rojas Macedo, Olger Gabriel para optar el Título Profesional de: Ingeniero Mecánico - Electricista

Asesor: Ing. Valencia Salas, Mario José

AREQUIPA-PERÚ

Universidad Católica de Santa María

ESCUELA PROFESIONAL DE INGENIERÍA MECANICA, MECÁNICA ELÉCTRICA Y MECATRÓNICA

INFORME DICTAMINATORIO

VISTO

EL BORRADOR DE TESIS TITULADO:

"DISEÑO E IMPLEMENTACION DE UN MODULO DE TURBINA FRANCIS PARA EL LABORATORIO DE TERMOFLUIDOS DE LA ESCUELA PROFESIONAL DE INGENIERIA MECANICA, MECANICA ELECTRICA Y MECATRONICA"

ROCEDE

Presentado por el Bachiller:

ROJAS MACEDO OLGER GABRIEL

GONGORA CRUZ LUIS ALBERTO

Nuestro DICTAMEN es:

OBSERVACIONES:

Arequipa, 10 Dicieube 2013

ING. MARIO VALENCIA SALAS

ING/MARGO CARPIO RIVERA

"Todo tiene su tiempo y todo lo que se quiere debajo del cielo tiene su hora" Gracias a Dios por todas las oportunidades.

Agradezco infinitamente a mis adorados padres que son mi motivo de ser y a los cuales les debo su desvelo y preocupación. A sus anhelos hasta ahora de verme lograr mis objetivos, A mi abuelito desde el cielo, y a todos aquellos que me dieron el aliento para concluir con

lo que amo. ¡Mi carrera profesional!

Luis Alberto.

"Siempre ten el don de la perseverancia y disciplina para logras tus mayores sueños" ¡Gracias a DIOS por darme unos padres que me mostraron el camino a la superación!... Agradezco a mis padres por su enorme apoyo y sacrificio, hermanos quienes me llenan de felicidad y alegría.

Olger

INTRODUCCIÓN

El presente proyecto tiene como finalidad el diseño, implementación y puesta en marcha del módulo de turbina Francis, siendo este un alcance para los interesados de la rama de hidráulica y diferentes ingenierías, a fin de comprender el funcionamiento para promover el desarrollo y mejoramiento de las necesidades energéticas.

El modulo está desarrollado tomando en cuenta el aumento de la demanda energética y el uso de energías renovables entre las que se destaca la energía hidráulica para abastecer la demanda creciente de forma sostenible y de bajo impacto ambiental. Por lo antes mencionado la importancia de construir un módulo de turbina Francis para la escuela profesional, donde el estudiante podrá afianzar sólidamente los conocimientos adquiridos.

Teniendo en cuenta estas consideraciones el presente proyecto de tesis se divide de la siguiente manera:

CAPITULO I GENERALIDADES: Se inicia el capítulo con la identificación del problema, descripción del problema, justificación, alcances, limitaciones y antecedentes cuyas interrogantes deberán ser respondidas en el desarrollo de las tesis. Para luego precisar los objetivos del estudio que serán contrastadas con los resultados del trabajo de la investigación.

CAPITULO II MARCO TEÓRICO: Los temas desarrollados son: centrales hidroeléctricas, turbinas hidráulicas, clasificación de las turbinas hidráulicas, estudio teórico de diseño de turbina Francis.

CAPÍTULO III DISEÑO DEL MÓDULO DE TURBINA FRANCIS: En este capítulo se desarrolla el diseño de la turbina Francis, tanto como selección de componentes que conforman el módulo de turbina.

CAPÍTULO IV PRUEBAS Y RESULTADOS: En este capítulo se muestran los resultados de los ensayos que se realizaron al módulo de turbina Francis a diferentes alturas, variando el ángulo de alabes y carga con la finalidad de obtener diferentes curvas que han de caracterizar el comportamiento de la turbina Francis para todas las posibles condiciones de trabajo.

CAPÍTULO V COSTOS DE IMPLEMENTACIÓN DEL MÓDULO DE TURBINA FRANCIS: En este capítulo detallamos los costos unitarios de los componentes y partes que conforman el módulo de turbina Francis.

El proyecto se culmina con las conclusiones, recomendaciones, bibliografía y anexos en esta última se detallan (Guía de prácticas de laboratorio de turbina Francis, manual de funcionamiento y operación del módulo de turbina Francis, un programa de mantenimiento preventivo y planos eléctricos, estructurales del módulo).

Publicación autorizada con fines académicos e investigativos En su investigación no olvide referenciar esta tesis

RESUMEN

La generación de energía eléctrica mediante centrales hidroeléctricas y la diversificación de ellas producen menor dependencia del suministro de combustibles fósiles y se aprovecha los recursos hídricos de nuestro país de las cuales no aprovechamos la geografía nacional con la que contamos y es nuestra obligación aprovechar al máximo y de manera responsable la riqueza hídrica de nuestro país, y para ello debemos valorar al agua como un bien económico, social y ambiental, por lo cual este proyecto busca ser una herramienta para reforzar los conocimientos teóricos de los futuros profesionales de la Escuela Profesional de Ingeniería Mecánica, Mecánica-Eléctrica y Mecatrónica.

El desarrollo de este trabajo se plantea con el diseño de un módulo de turbina Francis con las siguientes características: una altura neta de 8 m, potencia al eje entregada de 12 W a una velocidad de giro de 1100 RPM. Logrando una eficiencia de hasta 48%, el cual está en el rango de eficiencias para turbinas Francis en microgeneración, considerando lo anterior, el caudal ideal de trabajo es entre 20 a 50 LPM.

El diseño de la turbina consta principalmente de:

- Cámara espiral.
- Alabes directrices:

Fijos: Pre distribuidor compuesto por 7 alabes.

Móviles: Un distribuidor constituido por 12 álabes directores (Con un ancho de 5mm)

• Rotor o rodete de 7 alabes que es el corazón de la turbina ya que ahí tiene lugar el intercambio de energía entre la máquina y el fluido.

En el proceso de funcionamiento y evaluación del módulo se logró visualizar el proceso de transformación de energía, obteniéndose las curvas características, entre los principales resultados son: eficiencia entre 10% a 48%, velocidad optima de rotación entre 600 a 1170 RPM, las cuales varían según la altura neta y caudal.

Palabras claves: Turbinas hidráulicas, Turbina Francis, álabes móviles directores, Curvas características.

ABSTRACT

The generation of electricity through hydroelectric power plants and the diversification of them produce less dependence on the supply of fossil fuels and take advantage of the water resources of our country, from which we do not take advantage of the national geography that we have and it is our obligation to make the most and responsible use of the water wealth of our country, and for this we must value water as an economic good , social and environmental, which is why this project seeks to be a tool to reinforce the theoretical knowledge of future professionals of the Professional School of Mechanical, Mechanical-Electrical and Mechatronic Engineering.

The development of this work considers the design of a Francis turbine module with the following characteristics: a net height of 8 m, mechanical power delivered to the shaft of 12 W at a speed of 1100 RPM. Achieving an efficiency of up to 48%, which is in the range of efficiencies for Francis turbines in microgeneration, considering the above, the ideal flow of work is between 20 to 50 LPM.

The design of the turbine consists mainly of:

- Spiral chamber.
- Guide vanes.

fixed vanes: pre distribution composed of 7 fixed vanes, a distributor consisting *mobile* vanes: 12 mobile vanes directors (with a width of 5mm)

• Impeller: 7 blade impeller, which is the heart of the turbine, since there is an exchange of energy between the machine and the fluid.

In the process of operation and evaluation of the module it was possible to visualize the process of energy transformation, obtaining the characteristic curves between the main results are: Efficiency between 10% to 48%, optimum speed of rotation between 600 at 1170 RPM, which vary according to the net and caudal height.

Keywords: Hydraulic turbines, turbine Francis, Guide vanes adjustable, characteristic curves.

ÍNDICE

INTRODUCCIÓN III				
RESUMENV				
ABSTRACT	VI			
CAPÍTULO I	1			
1. GENERALIDADES	1			
1.1. IDENTIFICACIÓN Y DESCRIPCIÓN DEL PROBLEMA 1 1.2. OBJETIVOS 1 1.2.1 Objetivo General				
1.2.2. Objetivos Específicos	1			
1.3. JUSTIFICACIÓN	2			
1.4. ALCANCES Y LIMITACIONES	2			
1.4.1. Alcance	2			
1.4.2. Limitaciones	2			
1.5.1 Antecedentes Investigativos	2			
1.5.1. Antecedences investigativos	2			
CAPITULO II	4			
2. MARCO TEÓRICO	4			
2.1. CENTRAL HIDROELÉCTRICA	4			
2.2. TURBINAS HIDRÁULICAS	5			
2.3. CLASIFICACIÓN DE TURBINAS HIDRÁULICAS	6			
2.3.1. Según la función que desempeñan	6			
2.3.1.1. Turbo máquinas motrices	6			
2.3.1.2. Turbo máquinas generatrices	7			
2.3.1.3. Turbo máquinas reversibles	7			
2.3.1.4. Grupo de Transmisión o acoplamiento	8			
2.3.2. Según la Entrada de Agua	9			
2.3.2.1. Axiales	9			
2.3.2.2. Radiales	10			
2.3.2.3. Mixtas	10			
2.3.2.4. Tangenciales	11			
2.5.5. Seguir el Grado de reacción	11			
2.3.3.1. Turbinas de accion	12			
2.3.4. Selección de Turbinas hidróulicas	19			
2.5.4. Selección de Turbinas indrauncas	$\frac{10}{20}$			
2.4.1 Historia	$\frac{20}{20}$			
2.4.2 Principio de funcionamiento	$\frac{20}{22}$			
2.4.3. Componentes de una turbina Francis	23			
2.4.4. Desventajas v ventajas	24			
2.4.5. Características de la turbina Francis	25			
2.4.6. Clasificación de las turbinas Francis	. 27			
2.4.6.1. Turbinas Francis verticales	27			
2.4.6.2. Turbinas Francis horizontales	28			
2.4.6.3. Turbina Francis pura	29			
2.4.6.4. Turbina Francis mixta	30			

2.4.6.5. Turbina Francis lenta	30
2.4.6.6. Turbina Francis normal	31
2.4.6.7. Turbina Francis rápida y extra rápida	32
2.5. ESTUDIO TEÓRICO	32
2.5.1. Triangulo de velocidades	32
2.5.2. Rendimiento Hidráulico de la Turbina de Reacción	34
2.5.3. Velocidad específica	35
2.5.4. Energía específica neta positiva de aspiración, NPSE	36
2.5.5. Coeficiente de cavitación	37
2.5.6. Diametro del tubo de aspiracion D3	38
2.5.7. Diametro externo del rodete (D1)	39
2.5.8. Diametro interno del rodete $(\mathbf{D2})$	39 40
2.5.9. Ancho de la corona directriz (bu) para turbina Francis ienta	40
2.5.10. Ancho de la corona directriz (b0) para turbina Francis normal	40
2.5.11. Ancho de la corona directriz (b0) para turbina Francis rapida	40
2.5.12. Calculo de la corona directriz (DD) para turbino Francis extra rapida	41 41
2.5.15. Calculo del número de alabes para turbina Francis fenta	41
2.5.15. Calculo del número de alabes para turbina Francis normal	42
2.5.15. Calculo del número de alabes para turbina Francis avtra rápida	42
2.6. CURVAS CARACTERÍSTICAS DE LAS TURBINAS ERANCIS	42
2.6.1 Curvas de notencia (P)	43 44
2.6.2. Curvas de par mecánico (T)	44
2.6.3 Curvas de caudal (O)	45
2.6.4. Curvas de rendimiento en función de la velocidad de giro (n)	46
2.6.5 Curvas de colina	47
2.6.6. Curvas de rendimiento para H v N constantes (n)	48
	10
CAPITULO III	49
3. DISEÑO Y SELECCIÓN DE COMPONENTES DEL MÓDULO DE TURBINA	A
FRANCIS	49
3.1 ALTERNATIVAS DE SELECCIÓN DEL MÓDULO DE TURBINA E	49
3.2. DISEÑO DE TURBINA FRANCIS	52
3.2.1. Consideraciones preliminares	52
3.3. SELECCIÓN DE COMPONENTES DEL MÓDULO DE TURBINA F	52
3.3.1. Rotámetro	52
3.3.2. Manómetro	53
3.3.3. Freno de tipo Prony	55
3.3.4. Rodete Francis	56
3.3.5. Tablero Eléctrico y Control	57
3.3.6. Electrobomba Centrifuga	59
CAPITULO IV	60
4 PRUEBAS Y RESULTADOS	60
4.1 - ΟΠΡΑΛΩ CARACTERÍSTICAS DEL ΜΌΡΗ Ο DE TURRINA ERANCIS	60
4.1. UUK VAS CARACTERISTICAS DEL MUDULU DE TUKBINA FRANCIS. 4.1.1. Curve Corectorístico do Turbino Eronois con O- 101 DM con construence	00
4.1.1. Curva Caracteristica de Furdina Francis con $Q=10LPW$ con aperturas	62
4 1 2 Curve Característica de Turbina Francis con O- 201 DM con aporturas	03
4.1.2. Curva Caracteristica de Furbina Francis con Q $=$ 20LF M con aperturas de 25% 50% y 100%	64
$40 \ 25 \ 10 \ 50 \ 10 \ 100$	0-1

4.1.3. Curva Característica de Turbina Francis con $Q=35LPM$ con aperturas de 25%
50% y $100%$
4.1.4. Curva Característica de Turbina Francis con Q= 50LPM con aperturas de 25% 50% y 100%
4.1.5. Curva Característica de Turbina Francis con Q= 60LPM con aperturas de 25%
50% y 100%
4.1.6. Curva Característica de Turbina Francis con Q= 100LPM con aperturas de
25% 50% y 100%
4.1.7. Gráfico de eficiencia de módulo turbina Francis
4.1.8. Gráfico de potencia de modulo turbina Francis
4.1.9. Gráfico de eficiencia optimo a RPM constantes de modulo turbina F 73
CAPÍTULO V
5. COSTOS DE IMPLEMENTACIÓN DEL MÓDULO DE TURBINA FRANCIS 74
5.1. COMPONENTES OBTENIDOS POR COMPRA DIRECTA E INDIRECTA . 74
5.2. COSTOS DIRECTOS
5.3. COSTOS INDIRECTOS
5.4. COSTO TOTAL
CONCLUSIONES
RECOMENDACIONES
BIBLIOGRAFÍA
ANEXO A Datos Obtenidos
ANEXO B Manual De Operación Y Mantenimiento Del Módulo De Turbina Francis 98
ANEXO C Guías De Prácticas De Laboratorio De La Turbina Francis 102
ANEXO D Planos

LISTA DE TABLAS

Tabla 1: Principales ventajas y desventajas de las turbinas a reacción.	. 25
Tabla 2: Valores de Ns para diversos tipos de turbinas	. 36
Tabla 3: Matriz de ponderación para la selección del módulo	. 49
Tabla 4: Comparativa de costos para la selección de módulo de turbina Francis	. 51
Tabla 5: Principales características del módulo de turbina Francis	. 60
Tabla 6: Costos de Componentes – Compra Directa	. 75
Tabla 7: Costos de Componentes – Compra Indirecta (Fabricación/Ensamble)	. 76
Tabla 8: Costo total de módulo Turbina Francis	. 77

LISTA DE FIGURAS

Figura 1: Central Hidroeléctrica
Figura 2: Turbina Hidráulica Kaplan Y Pelton, La Energía Se Extrae Del Fluido 6
Figura 3: Bomba Centrifuga, La Energía Se Transmite al Fluido
Figura 4: Esquema Central Reversible Turbina Bomba
Figura 5: Acoplamiento De Una Turbina Tipo Michell-Banki A Una B. Centrifuga 9
Figura 6: Turbina De Flujo Axial
Figura 7: Turbina De Flujo Radial
Figura 8: Turbina De Flujo Mixta
Figura 9: Turbina De Flujo Tangencial (Pelton)
Figura 10: Clasificación de Turbinas Según el Grado de Reacción 11
Figura 11: Clasificación de Turbinas Según el Grado de Acción
Figura 12: Turbina Pelton
Figura 13: Turbina Turgo
Figura 14: Turbina Michell - Banki
Figura 15: Clasificación de Turbinas Según el Grado de Reacción 15
Figura 16: Turbina Francis
Figura 17: Turbina Kaplan
Figura 18: Turbina Bulbo 18
Figura 19: Tabla de Aplicación de la Turbina 19
Figura 20: Ábaco de Selección del Tipo de Turbina
Figura 21: Selección de Turbina Hidráulica Según el Número de Revoluciones 20
Figura 22: James Bicheno Francis, Inventor de la Turbina Francis
Figura 23: Primitiva Turbina Francis
Figura 24: Central Hidroeléctrica con Turbina Francis

Figura 25: Partes de una Turbina Francis				
Figura 26: Turbina Con Mayor Potencia (715mw) Y Caudal (690 M3/Seg) En Itaipu.26				
Figura 27: Presa de las Tres Gargantas				
Figura 28: Turbina Francis Vertical				
Figura 29: Turbina Francis Horizontal				
Figura 30: Turbina Francis Pura				
Figura 31: Turbina Francis Mixta 30				
Figura 32: Esquema de Turbina Francis con rodete Lento				
Figura 33: Esquema de Turbina Francis con rodete Normal				
Figura 34: Esquema de Turbina Francis con rodete Rápido				
Figura 35: Triangulo de Velocidades. 33				
Figura 36: Determinación de la Npse				
Figura 37: Esquema para definir el Coeficiente de Cavitación σnD				
Figura 38: Trayectoria de la Vena Fluida en el Distribuidor				
Figura 39: Curva Característica de Potencia para Turbina Francis				
Figura 40: Curvas Características de par Mecánico				
Figura 41: Curvas de caudal para los diferentes tipos de Turbinas Francis				
Figura 42: Curva de rendimiento en Función de la Velocidad de Giro				
Figura 43: Colinas de Rendimientos				
Figura 44: Curvas de Rendimiento, H Y N Constantes Para Distintas Turbinas 48				
Figura 45: Módulo de Turbina Francis Modelo Hm 450.02g.U.N.Tgerätebau 50				
Figura 46: Módulo de Turbina Francis Tecquipment Ltd				
Figura 47: Módulo de Turbina Francis propuesto 50				
Figura 48: Selección de Rotámetro				
Figura 49: Rotámetro industrial de agua y otros Fluidos De 10 – 1151pm 53				
Figura 50: Manómetro				

Figura 51: Selección del Manómetro.	55
Figura 52: Esquema de Freno Prony.	56
Figura 53: Selección de Balanza Resorte	56
Figura 54: Rodete de Turbina Francis	57
Figura 55: Componentes Físicos Eléctricos.	68
Figura 56: Diagrama Unifilar del Módulo de Turbina Francis	69
Figura 57: Electrobomba PENTAX 1.5 HP, 1" x 1".	70

riv

LISTA DE GRÁFICOS

Gráfico 1: Curva característica de módulo turbina Francis Q=10LPM, a=25%
Gráfico 2: Curva característica de módulo turbina Francis Q=10LPM, a=50%
Gráfico 3: Curva característica de módulo turbina Francis Q=10LPM, a=100% 64
Gráfico 4: Curva característica de módulo turbina Francis Q=20LPM, a=25%
Gráfico 5: Curva característica de módulo turbina Francis Q=20LPM, a=50%
Gráfico 6: Curva característica de módulo turbina Francis Q=20LPM, a=100%
Gráfico 7: Curva característica de módulo turbina Francis Q=35LPM, a=25%
Gráfico 8: Curva característica de módulo turbina Francis Q=35LPM, a=50%
Gráfico 9: Curva característica de módulo turbina Francis Q=35LPM, a=100% 67
Gráfico 10: Curva característica de módulo turbina Francis Q=50LPM, a=25%
Gráfico 11: Curva característica de módulo turbina Francis Q=50LPM, a=50% 67
Gráfico 12: Curva característica de módulo turbina Francis Q=50LPM, a=100% 68
Gráfico 13: Curva característica de módulo turbina Francis Q=50LPM, a=100% 69
Gráfico 14: Curva característica de módulo turbina Francis Q=60LPM, a=50% 69
Gráfico 15: Curva característica de módulo turbina Francis Q=60LPM, a=100% 69
Gráfico 16: Curva característica de módulo turbina Francis Q=100LPM, a=25% 70
Gráfico 17: Curva característica de módulo turbina Francis Q=100LPM, a=50% 71
Gráfico 18: Curva característica de módulo turbina Francis Q=100LPM, a=100% 71
Gráfico 19: Curva de eficiencias de módulo turbina Francis
Gráfico 20: Curva de potencia mecánica de módulo turbina Francis
Gráfico 21: Curva de eficiencia optima a RPM constantes de módulo turbina F73

CAPÍTULO I

1. GENERALIDADES

1.1. IDENTIFICACIÓN Y DESCRIPCIÓN DEL PROBLEMA

El problema surge a partir de la necesidad de recursos básicos (energía eléctrica), por características especiales como la lejanía y poca accesibilidad de sus localidades, poblaciones y viviendas dispersas, bajo poder adquisitivo de los habitantes, poca infraestructura vial, entre otros.

Por lo tanto, es necesario que el profesional conozca profundamente el aprovechamiento de los recursos renovables, como también todos los parámetros de diseño de la turbina y selección de todos los demás componentes de una turbina Francis para posteriormente aplicarlos y consolidar el aprovechamiento de fuentes locales de energía como una alternativa viable para la electrificación rural de sitios aislados y dispersos.

Con el módulo de pruebas de la Turbina Francis se busca que el estudiante tenga una herramienta para reforzar los conocimientos teóricos del funcionamiento, diseño y fabricación de microgeneradores hidráulicos para el aprovechamiento de un recurso hídrico.

1.2. OBJETIVOS

1.2.1. Objetivo General

 Diseñar e implementar un Módulo de Turbina Francis para el Laboratorio de Termofluidos de la Escuela Profesional de Ingeniería Mecánica, Mecánica - Eléctrica y Mecatrónica.

1.2.2. Objetivos Específicos

- Diseñar e implementar un Módulo de enseñanza de Turbina Francis con una potencia al eje de 12Watts.
- Proponer una metodología para diseñar e implementar un módulo de turbina Francis a partir de información teórico experimental.
- Diseñar, fabricar, seleccionar los componentes del Módulo de enseñanza de Turbina Francis.

- Diseñar, elaborar guías de protocolo de funcionamiento y operación, Pruebas experimentales del módulo de turbina Francis.
- Desarrollar un Programa de mantenimiento preventivo del módulo Turbina Francis.

1.3. JUSTIFICACIÓN

En los últimos tiempos se ve por conveniente fomentar el desarrollo y sobre todo el uso de los recursos hidroenergéticos, por ende, el desarrollo de este proyecto que nos permitirá aplicar los conocimientos teóricos adquiridos en nuestra casa de estudios, de la misma forma también contribuirá con el desarrollo intelectual de los alumnos y egresados que realicen estudios en el área de energías de la Escuela Profesional de Ingeniería Mecánica, Mecánica Eléctrica y Mecatrónica.

1.4. ALCANCES Y LIMITACIONES

1.4.1. Alcance

El presente proyecto tiene por alcance diseñar e implementar un Módulo de Turbina Francis para el Laboratorio de Energía de la Escuela Profesional de Ingeniería Mecánica, Mecánica - Eléctrica y Mecatrónica, con el objetivo de enseñanza – aprendizaje de los alumnos en las asignaturas competentes.

1.4.2. Limitaciones

- La energía generada por la turbina Francis no será absorbida por un generador eléctrico, sino por un dispositivo de freno ajustable de tipo Prony el cual se encargará de simular la carga.
- Debido a que el módulo de la turbina Francis tiene fines demostrativos sobre su principio de operación, este se fabricó en metacrilato y policarbonato, el cual es un plástico de ingeniería que facilita la observación del área de trabajo haciéndolo más didáctico para el alumno.

1.5. ANTECEDENTES

1.5.1. Antecedentes Investigativos

"Un banco de pruebas es una plataforma para experimentación de proyectos de gran desarrollo. Los bancos de pruebas brindan una forma de comprobación

rigurosa, transparente y repetible de teorías científicas, elementos computacionales y otras nuevas tecnologías" (Porras, 2011).

- "Al energizar el circuito de una instalación eléctrica, se debe tener precauciones de mantener la válvula de compuerta cerrada, para evitar el salto de amperaje en el motor de la bomba, con la válvula cerrada la bomba arranca limitada" (Betancourt, 2007).
- "Los bancos de pruebas para ensayos de bombas, permiten reproducir en un ambiente controlado las condiciones reales en las que operan las máquinas hidráulicas, tuberías y demás accesorios" (Uchuary, 2013).
- "Este trabajo es un estudio que se hizo a una turbina Francis, con el fin de generar las curvas características, comparar y verificar su funcionamiento bajo distintos parámetros entre los cuales se encuentra presión, caudal y velocidad de giro"(Alarcon Ramirez & Sandoval Delgado, 2008).

CAPITULO II

2. MARCO TEÓRICO

2.1. CENTRAL HIDROELÉCTRICA

El origen de la energía hidráulica está en el ciclo hidrológico de las lluvias y, por tanto, en la evaporación solar y la climatología, que remontan grandes cantidades de agua a zonas elevadas de los continentes alimentando los ríos. Este proceso está originado, de manera primaria, por la radiación solar que recibe la Tierra.

Estas características hacen que sea significativa en regiones donde existe una combinación adecuada de lluvias, desniveles geológicos y orografía favorable para la construcción de presas. Es debido a la energía potencial contenida en las masas de agua que transportan los ríos, provenientes de la lluvia y del deshielo. Puede ser utilizada para producir energía eléctrica mediante un salto de agua, como se hace en las centrales hidroeléctricas.

La energía hidráulica tiene la cualidad de ser renovable, pues no agota la fuente primaria al explotarla, y es limpia, ya que no produce en su explotación sustancias contaminantes de ningún tipo. Sin embargo, el impacto medioambiental de las grandes presas, por la severa alteración del paisaje e, incluso, la inducción de un microclima diferenciado en su emplazamiento, ha desmerecido la bondad ecológica de este concepto en los últimos años.

Al mismo tiempo, la madurez de la explotación hace que en los países desarrollados no queden apenas ubicaciones atractivas por desarrollar nuevas centrales hidroeléctricas, por lo que esta fuente de energía, que aporta una cantidad significativa de la energía eléctrica en muchos países (Zoppetti, 1979).

Figura 1: Central Hidroeléctrica

2.2. TURBINAS HIDRÁULICAS

La turbina hidráulica es una turbomáquina motora, y por tanto esencialmente es una bomba rotodinámica que trabaja a la inversa. Así como una bomba absorbe energía mecánica y restituye energía al fluido; una turbina absorbe energía del fluido y restituye energía mecánica (Mataix, 1986).

Una maquina hidráulica es un dispositivo capaz de convertir energía hidráulica en mecánica; puede ser motrices (turbinas), o generatrices (Bombas), modificando la energía total de la vena fluida que las atraviesa. En el estudio de las turbomáquinas hidráulicas no se tienen en cuenta efectos de tipo térmico, aunque a veces habrá necesidad de recurrir a determinados conceptos termodinámicos: todos los fenómenos que se estudian serán en régimen permanente, caracterizados por una velocidad de rotación de la máquina y un caudal constantes. En una maquina hidráulica, el agua intercambia energía con un dispositivo mecánico de revoluciones que gira alrededor de su eje de simetría; este mecanismo lleva una o varias ruedas, (rodetes o rotores), provistas de alabes, de forma que entre ellos existen unos espacios libres o canales, por los que circula el agua (Fernández Díez, 1996).

Los métodos utilizados para su estudio son, el analítico, el experimental y el análisis dimensional.

- *El método analítico*, se fundamenta en el estudio del movimiento del fluido a través de los álabes, según los principios de la Mecánica de Fluidos.
- *El método experimental*, se fundamenta en la formulación empírica de la Hidráulica, y la experimentación.
- *El análisis dimensional,* ofrece grupos de relaciones entre las variables que intervienen en el proceso, confirmando los coeficientes de funcionamiento de las turbomáquinas, al igual que los diversos números adimensionales que proporcionan información sobre la influencia de las propiedades del fluido en movimiento a través de los órganos que las componen.

2.3. CLASIFICACIÓN DE TURBINAS HIDRÁULICAS

2.3.1. Según la función que desempeñan

2.3.1.1. Turbo máquinas motrices

"Que recogen la energía cedida por el fluido que las atraviesa, y la transforman en mecánica", Pudiendo ser de dos tipos:

- Dinámicas o cinéticas, turbinas y ruedas hidráulicas.
- Estáticas o de presión, celulares (paletas), de engranajes, helicoidales, etc (Fernández Díez, 1996).

Figura 2: Turbina Hidráulica Kaplan y Pelton, la energía se extrae del fluido.

Fuente:http://fluidos.eia.edu.co/hidraulica/articuloses/maquinashidraulicas/sel_turbinas/fo ndos/eleccion.htm (2016)

2.3.1.2. Turbo máquinas generatrices

Que aumentan la energía del fluido que las atraviesa de forma potencial, (aumento de presión), o cinética; la energía mecánica que consumen en sus entradas por un motor". Pudiendo ser:

- *Bombas de alabes*, entre las que se encuentran las bombas centrifugas y axiales.
- *Hélices marinas*, cuyo principio es diferente a las anteriores: proporcionan un empuje similar al requerido para un buque (Fernández Díez, 1996).

Fuente: Pedro D. Departamento de Ingeniera eléctrica y energética, Bombas centrífugas y Volumétricas, Universidad de Cantabria. (1998)

2.3.1.3. Turbo máquinas reversibles

La clasificación de las turbinas hidráulicas de fluido compresible se puede hacer con arreglo a la función que desempeñan en las siguientes formas: "Tanto generatrices como motrices, que ejecutan una serie de funciones que quedan aseguradas, mediante un rotor específico". Siendo las más importantes:

- Grupos turbina-bomba, utilizados en centrales eléctricas de acumulación por bombeo.
- Grupos Bulbo, utilizados sobretodo en la explotación de pequeños saltos de centrales mareomotrices por su diseño y geometría (Fernández Díez, 1996).

Figura 4: Esquema central reversible turbina bomba.

Fuente: ttps://mat.caminos.upm.es/w/images/4/46/EsquemaFuncionHidroelectRevers.png (2016)

2.3.1.4. Grupo de Transmisión o acoplamiento

"Que son una combinación de máquinas motrices y generatrices, es decir, un acoplamiento (bomba-turbina), alimentadas en circuito cerrado por un fluido, en general aceite presurizado, el cual se dirige contra la turbina para hacerla girar; a este grupo pertenecen los conocidos cambiadores de par" (Fernández Díez, 1996).

Figura 5: Acoplamiento de una turbina tipo Michell-Banki a una bomba

UNIVERSIDAD

ÓLICA

SANTA MARÍA

Fuente:http://www.bvsde.paho.org/eswww/proyecto/repidisc/publica/hdt/hdt051-

a.html#turbo (2011)

2.3.2. Según la Entrada de Agua

2.3.2.1. Axiales

En este tipo de turbomáquina térmica el flujo del fluido de trabajo ingresa paralelamente al eje de rotación de la misma, al contrario que las maquinas radiales como si se tratase de un molino hidráulico. Cabe recalcar que se puede presentar un desplazamiento de las líneas de corriente en la dirección radial entre las coronas de los alabes.

Fuente: https://ingelibreblog.files.wordpress.com/2014/04/clasificacion1.jpg (2014)

2.3.2.2. Radiales

El agua entra perpendicularmente al eje (el agua entra en sentido radial), siendo centrifugas cuando el agua vaya de dentro hacia fuera, y centrípetas, cuando el agua vaya de afuera hacia adentro, es por ello que son capaces de provechar la energía proveniente del fluido en forma de impulso rotatorio. Además de esto las turbinas radiales pueden manejar niveles de flujo más lentos que los que podría manejar una axial.

Figura 7: Turbina de flujo radial.

Fuente:

https://ingelibreblog.files.wordpress.com/2014/04/clasificacion1.jpg (2014)

2.3.2.3. Mixtas

En este tipo de turbomáquina se tiene una combinación entre turbinas de flujo axial y turbinas de flujo radial.

Fuente: <u>https://ingelibreblog.files.wordpress.com/2014/04/clasificacion1.jpg</u> (2014)

2.3.2.4. Tangenciales

El agua entra lateral o tangencialmente contra las palas, cangilones o cucharas de la rueda.

Fuente: Fernández, Pedro D. Departamento de Ingeniera eléctrica y energética, Turbinas Hidráulicas, Universidad de Cantabria (1998)

2.3.3. Según el Grado de reacción

Las turbinas según el grado de reacción se clasifican en dos:

- *Turbinas de acción o Impulsión*, son aquellas en las que el fluido de trabajo no sufre un cambio de presión importante en su paso a través del rodete.
- *Turbinas de Reacción o Sobrepresión*, son aquellas en las que el fluido de trabajo si sufre un cambio de presión importante en su paso a través del rodete.

Figura 10: Clasificación de turbinas según el grado de reacción

	ACCION	- Sólo se construyen prácticamente de <i>flujo tangencial</i> y son las turbinas Pelton	
TURBINAS	REACCION	<i>de flujo diagonal</i> (excepcio- nalmente de <i>flujo radial)</i>	de álabes fijos: turbinas Francis de álabes orientables: turbinas Dériaz (Francis de álabes orien- tables)
		de flujo axial	de álabes fijos: turbinas hélice de álabes orientables: turbinas Kaplan (hélice de álabes orien- tables)

Fuente: Mecánica de fluidos y maquinas hidráulicas,2ed, CLAUDIO MATAIX (1986)

2.3.3.1. Turbinas de acción

En las turbinas de acción se convierte previamente la energía de presión del fluido de trabajo en energía cinética, creando un chorro libre en la atmósfera. Este chorro se hace incidir sobre los álabes de un rotor, que gira asimismo en el seno de la atmósfera, desviando el chorro, apareciendo por ello un par sobre él que se utiliza para extraer la energía, son máquinas muy robustas y simples, capaces de brindar un buen rendimiento (Marchegiani, 2004).

"El agua sale del distribuidor a presión atmosférica, y llega al rodete con la misma presión; en estas turbinas, toda la energía potencial del salto se transmite al rodete de energía cinética" (Fernández Díez, 1996). Entre las turbinas de acción podemos encontrar:

- Turbina Pelton.
- Turbina Turgo.
- Turbina Michell Banki

Figura 11: Clasificación de turbinas según el grado de acción.

Fuente: Elaboración propia

a) Turbina Pelton

Las turbinas Pelton catalogadas como turbomáquinas motoras, de flujo tangencial, admisión parcial y de acción. están diseñadas para explotar grandes saltos hidráulicos de bajo caudal.

Figura 12: Turbina Pelton

Fuente:http://fluidos.eia.edu.co/hidraulica/articuloses/maquinashidraulicas/turbinasidrauli cas/turbinashidraulicas.html (2011)

13

b) Turbina Turgo

Es una turbina hidráulica de impulso similar a la conocida turbina Pelton con varias ventajas en determinadas aplicaciones. sus álabes de esta tienen una forma y disposición distinta, el chorro incide con un ángulo de 20° respecto al plano diametral del rodete, entrando por un lado del disco diametral y saliendo por el otro. Puesto que la interferencia entre el chorro de salida y el de entrada es menor que en turbinas Pelton, si se comparan turbinas igual diámetro de rodete, la turbina Turgo admite un caudal de diseño cercano al doble del de una turbina Pelton. Por lo tanto, la potencia en el eje es también cercana al doble. Ésta es una de las razones por las cuales las turbinas Turgo son ampliamente utilizadas en microcentrales por su diseño para saltos de desnivel medio, aun cuando su rendimiento de las turbinas Turgo sea un poco más bajo que en turbinas Pelton (Hauser Vavra, 2011).

Figura 13: Turbina Turgo

Fuente: HauserVavra, K. (2011). Caracterización de turbina hidráulica tipo Turgo

c) Turbina Michell – Banki

La turbina Michell-Banki, también conocida por los nombres de turbina de flujo cruzado, turbina de flujo fransversal o turbina Banki, es una máquina hidráulica utilizada en aprovechamientos hidroeléctricos de hasta 2000 kW. Lo que la hace atractiva frente a otras turbinas clásicas es la sencillez de su construcción y, para cierto rangos de caída y caudal, su costos significativamente menor; la principal desventaja comparativa frente aquellas es su rendimiento más bajo, el funcionamiento de la Banki no guarda similitud con ninguna de las turbinas conocidas (Gómez Gómez, Palacio Higuita, & Paredes Gutiérrez, 2008).

Figura 14: Turbina Michell - Banki.

Fuente: http://cmchydro.es/en/turbine-banki-michell.php (1998)

14

La selección de un tipo de turbina u otra estará relacionada básicamente con las características de la central para la que se requiere. Para alturas pequeñas y caudales muy grandes se utiliza generalmente la turbina Kaplan, mientras que para caudales pequeños y alturas muy grandes se utiliza la turbina Pelton. Pero la turbina Francis, más versátil por su diseño y geometría, se ajusta para valores intermedios de altura y caudal. En la siguiente ilustración se pueden observar dos gráficas de dos fabricantes diferentes en las que se representan los tipos de turbinas utilizados en función de altura y caudal (Hermosin Aumente, 2016).

2.3.3.2. Turbinas de reacción

Las turbinas de reaccion son de admision total, es decir el flujo de trabajo entra al rodete por toda la periferia de la misma.

El agua sale del distribuidor con una cierta presión que va disminuyendo a medida que el agua atraviesa los alabes del rodete, de forma que, a la salida, la presión puede ser nula o incluso negativa; en estas turbinas el agua circula a presión en el distribuidor y en el rodete y, por lo tanto, la energía potencial del salto se transforma, una parte, en energía cinética, y la otra, en energía de presión (Fernández Díez, 1996).

Entre las turbinas de reacción podemos encontrar:

- Turbina Francis.
- Turbina Kaplan.
- Turbina Bulbo.

Figura 15: Clasificación de turbinas según el grado de reacción.

Fuente: Elaboración propia

UNIVERSIDAD CATÓLICA DE SANTA MARÍA

a) Turbina Francis

Es radial centrípeta, con tubo de aspiración; el rodete es de fácil acceso, por lo que es muy práctica. Es fácilmente regulable y funciona a un elevado número de revoluciones; es el tipo más empleado, y se utiliza en saltos variables, desde 0,5 m hasta 180 m; pueden ser, lentas, normales, rápidas y extra rápidas (Fernández Díez, 1996).

Figura 16: Turbina Francis

Fuente:https://kolednik.wordpress.com/obnovljivi-viri-energije/vodna-energija/

b) Turbina Kaplan

Las turbinas Kaplan, son turbinas de admisión total, clasificado como turbina a reacción, se aplican en saltos de pequeña altura (alrededor de 50 m y menos), con caudales medios y grandes (aproximadamente de 15m3/s en adelante). Debido a su singular diseño semejante a la hélice del motor de un barco, permiten desarrollar elevadas velocidades específicas, obteniéndose buenos rendimientos, entre extensos límites de variación de caudal. A igualdad de potencias, las turbinas Kaplan son menos voluminosas que las turbinas Francis. Normalmente se instalan con el eje de posición vertical, aunque también se presentan para ser colocadas de forma horizontal o inclinada (Lostaunau, 2005).

Por su regulación, los alabes del rodete giran alrededor de su propio eje, accionados por unos vástagos, que son solidarios a unas bielas articuladas a una cruceta, que se desplaza hacia arriba o hacia abajo

por el interior del eje hueco de la turbina. Este desplazamiento es accionado por un servomotor hidráulico, con la turbina en funcionamiento.

Figura 17: Turbina Kaplan

Fuente: https://kolednik.wordpress.com/obnovljivi-viri-energije/vodna-energija/

17

c) Turbina Bulbo

Los grupos Bulbo, como parte fundamental de algunas centrales mini hidráulicas y mareomotrices, no son más que un tipo especial de turbina Kaplan que se caracteriza por su hélice, capaces de aprovechar saltos de pequeño desnivel, pero de gran caudal. Estos grupos fueron concebidos en un principio para ser utilizados en cuencas fluviales de grandes caudales y posteriormente han sido empleados también por las centrales mareomotrices, que como sabemos se caracterizan, por pequeñas alturas y grandes caudales (Fernández Díez, 1996).

La ventaja de estos grupos, en los que el agua se desliza axialmente, es muy superior a los de eje vertical y tiene la posibilidad de funcionamiento en los dos sentidos, por ello son utilizados en cuencas fluviales de grandes caudales porque produce una mejor distribución de velocidades del agua sobre los alabes, lo que permite disminuir el diámetro de las mismas.

Figura 18: Turbina Bulbo

Fuente: https://equipo2fae.wordpress.com/turbina-tipo-bulbo/ (2007)

18

2.3.4. Selección de Turbinas hidráulicas

La selección de un tipo de turbina u otra estará relacionada con las características de la central. Para alturas pequeñas y caudales muy grandes se utiliza generalmente la turbina Kaplan, mientras que para caudales pequeños y alturas muy grandes se utiliza la turbina Pelton. La turbina Francis, más versátil, se ajusta para valores intermedios de altura y caudal. En la siguiente ilustración se pueden observar dos gráficas de dos fabricantes diferentes en las que se representan los tipos de turbinas utilizados en función de altura y caudal (Hermosin Aumente, 2016).

Figura 19: Tabla de aplicación de la turbina

Fuente: Renedo, C. (2010)

Fuente: Renedo, C. (2010)

Figura 21: Selección de turbina hidráulica según el número de revoluciones

UNIVERSIDAD

de santa maría

CATÓLICA

2.4. TURBINAS DE REACCIÓN: TURBINA FRANCIS

2.4.1. Historia

En 1826 Benoit Fourneyron desarrolló una turbina de flujo externo de alta eficiencia (80%). El agua era dirigida tangencialmente a través del rodete de la turbina provocando su giro. Alrededor de 1820 Jean V. Poncelet diseñó una turbina de flujo interno que usaba los mismos principios, y S. B. Howd obtuvo en 1838 una patente en los EE.UU. para un diseño similar.

En 1848 James B. Francis mejoró estos diseños y desarrolló una turbina con el 90% de eficiencia. Aplicó principios y métodos de prueba científicos para producir la turbina más eficiente elaborada hasta la fecha. Más importante, sus métodos matemáticos y gráficos de cálculo mejoraron el estado del arte en lo referente a diseño e ingeniería de turbinas. Sus métodos analíticos permitieron diseños seguros de turbinas de alta eficiencia. Su concepción aventajó a la mayoría de las formas anteriores de turbinas en que el flujo se dirigía bajo presión en sentido centrípeto, con lo que cualquier tendencia a acelerarse quedaba parcialmente contrarrestada por la reducción de flujo debida al aumento

de la fuerza centrífuga. El rodete era similar al de una bomba centrífuga, con un flujo radial predominante y, además, con los mismos radios de entrada y salida para todas las líneas de corriente. Cuando comienza a aumentar la necesidad de conseguir mayores potencias a velocidades más altas, se vio la obligación de adoptar el rodete para flujos más caudalosos sin aumentar el diámetro. Esto solamente podía realizarse haciendo que el agua siguiera una dirección radial-axial.

El resultado de esto fue el tipo de turbina que se conoce ahora. Si bien las turbinas actuales guardan pocas semejanzas con la original, su principio de funcionamiento sigue igual.

Figura 22: James Bicheno Francis, inventor de la turbina Francis.

Fuente: https://todayinsci.com/F/Francis_James/FrancisJames-ObitAAAS(1893).htm

Figura 23: Primitiva turbina Francis

Fuente:https://commons.wikimedia.org/wiki/File:Turbina_Francis_mNACTEC.jpg

Publicación autorizada con fines académicos e investigativos En su investigación no olvide referenciar esta tesis

2.4.2. Principio de funcionamiento

La turbina Francis usada en el mundo principalmente para la producción de energía eléctrica en centrales hidroeléctricas es una de las turbinas hidráulicas más comunes y eficientes. Esta turbina es radial considerada como una turbomáquina motora a reacción, de flujo mixto, trabaja con un amplio rango de alturas entre 5 m y 550 m. Esto, con su alta eficiencia es similar a la de las turbinas de hélice.

Una turbina Francis está compuesta principalmente de una cámara de descarga, que es por donde entra el agua. una voluta o cámara espiral encargada de la distribución uniforme del agua; un rodete, constituido por un número determinado de álabes y un tubo de aspiración, por el cual sale el agua de la turbina.

En las turbinas Francis el agua que viene del ducto entra perpendicularmente al eje de la turbina y sale paralela a este. El agua entra a la turbina por la cámara de descarga, de allí va al rodete el cual es impulsado por el agua y comienza a girar, para controlar el caudal de agua en el rodete se usan unas paletas directrices dispuestas de manera circular todas entre si, este conjunto es denominado distribuidor, las paletas directrices se mueven sobre un pivote individual de tal forma que llegan a tocarse en la posición de cerrado, en cuyo caso no entra agua en el rodete, y tienen sus caras casi paralelas en la posición de abierto, en cuyo caso el caudal de agua recibido por el rodete es máximo, regulando de esta manera el caudal. Las paletas directrices del distribuidor son accionadas mediante un anillo móvil que conecta todas las paletas, el anillo móvil es a su vez accionado mediante el regulador de velocidad de la turbina. Luego de pasar por el rodete, el agua sale de la turbina por el tubo de aspiración (Lostaunau, 2005).

Figura 24: Central hidroeléctrica con turbina Francis.

JNIVERSIDAD

SANTA MARÍA

Fuente:https://www.esferaviva.com (2018)

2.4.3. Componentes de una turbina Francis

Las partes de la turbina Francis generalmente son las siguientes:

- 1. Cámara espiral. Es un ducto alimentador de sección generalmente circular y diámetro decreciente, que circula al rotor, tiene como función distribuir uniformemente el fluido en la entrada del rodete.
- 2.*Pre distribuidor*. Está compuesto por álabes fijos que tienen una función netamente estructural
- *3.Distribuidor*. Es un órgano constituido por una serie de álabes móviles directores en forma de persiana, cuyo paso se puede modificar con la ayuda de un servomotor y su misión es dirigir convenientemente el agua hacia los álabes del rodete (fijos) y regular el caudal admitido.
- 4.Rotor o rodete móvil. Es el corazón de la turbina, ya que aquí tiene lugar el intercambio de energía entre la máquina y el fluido. Está formado por los propios alabes, los cuales están incrustados en un plato perpendicular al eje de la máquina, de cuyo plato arrancan siguiendo la dirección axial, tomando en forma progresiva un alabeo y abriéndose a hacia la dirección radial.
- *5.Tubo de aspiración*, Da salida al agua de la turbina y al mismo tiempo procura una ganancia en carga estática hasta el valor de la presión atmosférica. debido

UNIVERSIDAD Católica De Santa María

a su forma acodada y ensanchamiento progresivo crea una succión a la salida del rotor es decir una depresión que vendría a ser una función aspiratoria permitiendo recuperar energía cinética la salida del mismo.

Figura 25: Partes de una Turbina Francis.

Fuente: Renedo, T. (2010)

24

2.4.4. Desventajas y ventajas

En la siguiente tabla, se muestran las desventajas y ventajas de las turbinas más comunes que actualmente se usan.

Tipo de turbina		Ventajas		Desventajas
	✓	Bajas perdidas hidráulicas.	√	Alto desgaste de erosión por su
	✓	Tienen un mayor rendimiento		geometría.
Francis		máximo por su diseño	✓	Bajo rendimiento a cargas
		hidrodinámico.		parciales.
	~	Mayor economía en la turbina.		
	~	Es de pequeñas dimensiones.		
	~	Alta velocidad especifica.	✓	Altas velocidades de
Kaplan	~	Los alabes del rodete y distribuidor		embalamiento.
		pueden adaptarse a cambios de	~	Los sistemas de regulación
	l	salto v caudal		aumentan su costo
	~	Su alta velocidad de rotación		considerablemente
	7	permite reducir su tamaño	~	Presenta alto riesgo de
2			1	cavitación.
	~	Turbina-generador dentro del	~	Fabricación y mantenimiento
Bulbo		bulbo por ende disminución de		muy complejo y costoso.
		perdidas		
	✓	Bajo costo de obras civiles		

Tabla 1 Principales ventajas y desventajas de las turbinas a reacción.

JNIVERSIDAD

ÓLICA

SANTA MARÍA

Fuente: Elaboración propia

2.4.5. Características de la turbina Francis

La turbina Francis puede ser utilizada en distintos tipos de complejos hidroeléctricos, debido a su versatilidad para trabajar a diferentes condiciones de carga y caudal, gracias a su diseño y geometría las turbinas Francis son el tipo de turbinas más usado en el mundo en la actualidad.

La tendencia en las turbinas hidráulicas modernas es utilizar caídas mayores y máquinas más grandes para un mejor aprovechamiento hidráulico. Según el tamaño de la unidad en el caso de las turbinas Francis se emplean en caídas de hasta 610 m. Las turbinas más grandes del mundo están en una planta generadora de la presa de Itaipú, situada entre Paraguay y Brasil, donde se utilizan 18

turbinas de tipo Francis de 715 megavatios (MW) de potencia cada una, que consiguen un total de 12.600 MW. En la planta hidroeléctrica las tres gargantas situada en el curso del río Yangtsé en China con una capacidad instalada de 22 500 MW y la segunda mayor del mundo en producción de energía, con una producción de 98,8 millones de MWh.

Figura 26: Turbina con mayor potencia (715Mw) y caudal (690 m3/seg) en Itaipu.

Fuente: @Julen_iccp (2016)

Figura 27: Presa de las tres gargantas en china.

Fuente:https://commons.wikimedia.org/w/index.php?curid=11425004 (2004)

Las turbinas Francis tienen un rendimiento óptimo por su diseño hidráulico que garantiza una larga vida útil, es decir muchas décadas en servicio continuo. También su alta velocidad de giro permite pequeñas dimensiones.

La aplicación de modernos materiales reduce el mantenimiento de las piezas móviles al mínimo.

La turbina Francis es instalada en todo lugar donde se dé un flujo de agua relativamente constante y donde se exige un alto rendimiento. Su eficiencia es aproximadamente de 8% por encima de la turbina de Flujo Cruzado, pero tiene la desventaja de no poder operar con grandes variaciones del caudal de agua.

2.4.6. Clasificación de las turbinas Francis

La clasificación depende de muchos factores, como por su posición o configuración, según esto se tienen dos tipos de turbinas:

- Turbinas Francis vertical.
- Turbinas Francis horizontal.

Por otra parte, las turbinas Francis se clasifican también dependiendo de la acción del agua dentro de la turbina, estas pueden ser.

- Turbina Francis pura.
- Turbina Francis mixta.

También se clasifican en función a su velocidad específica del rodete, cuyo número de revoluciones por minuto depende de las características de salto, y estas pueden ser.

- Turbina Francis lenta, para saltos de gran altura de 200 m a mas
- *Turbina Francis normal*, indicada para saltos de media altura entre 200 m y 20m con un rendimiento ideal
- *Turbina Francis rápidas y extra rápidas*, apropiada para saltos pequeños inferiores a 20m

2.4.6.1. Turbinas Francis verticales

En este tipo de turbinas Francis instaladas con el eje en posición vertical se obtiene una gran potencia, y las empresas constructoras de turbinas tienen mayor experiencia en la construcción de estas.

Figura 28: Turbina Francis vertical.

Fuente: https://www.researchgate.net (2016)

28

2.4.6.2. Turbinas Francis horizontales

En esta posición de las turbinas Francis en plano horizontal se caracterizan por ser muy compactas y por lo tanto tienen una larga vida útil. La cámara de descarga rodea verticalmente, mientras que la cámara de aspiración sigue siendo vertical, como en las turbinas Francis verticales, también la turbina y el generador son completamente separados, lo que genera una disposición ventajosa del cuarto de máquinas teniendo más beneficios ya que la turbina y el generador están en el mismo nivel, habiendo más facilidad de montaje como más facilidad para la reparación o mantenimiento de componentes tanto de la turbina como el generador. también hay un costo reducido en la compra del generador y turbina.

Figura 29: Turbina Francis horizontal.

Fuente: https://www.researchgate.net (2016)

2.4.6.3. Turbina Francis pura

En el caso de la turbina Francis pura, la trasferencia energética del agua o fluido de trabajo al rotor se realiza a medida que el agua atraviesa los alabes en dirección radial, de afuera hacia adentro, aprovechando de esta manera al máximo la acción centrípeta por medio de un recorrido radial relativamente largo, sin embargo, esto hace que el desfogue central se dificulte, por lo cual el gasto se halla de cierta manera limitado.

La turbina Francis pura por su configuración es utilizada normalmente para saltos de agua con cargas relativamente grandes y con caudales reducidos.

Figura 30: Turbina Francis pura

Fuente: repository.eafit.edu.co (2018)

2.4.6.4. Turbina Francis mixta

En la turbina Francis mixta, el agua también recorre los álabes en dirección radial de la turbina y de afuera hacia adentro, sin embargo, esto ocurre solo en la parte superior de los álabes, terminado el agua el recorrido por los alabes en dirección axial, de esta manera la turbina trabaja en su fase final como una turbina axial.

Para lograr la doble acción en la turbina, la geometría del alabe debe ser alargada en su dirección axial, al mismo tiempo que presenta una forma ensanchada que facilita la salida de un mayor caudal. Este tipo de turbina Francis es empleada en saltos de agua con cargas medianas a bajos caudales de medianos a grandes.

Figura 31: Turbina Francis mixta

Fuente: repository.eafit.edu.co (2018)

30

2.4.6.5. Turbina Francis lenta

Por lo general se utilizan en los grandes saltos, con ellos se tiende a reducir el número de revoluciones, lo cual supone un aumento del diámetro D1 del rodete de la turbina respecto al del tubo de aspiración D3.

El ángulo a la entrada $\beta 1 < 90^{\circ}$, ($\alpha 1 < 15^{\circ}$) y su número de revoluciones específico está comprendido entre 50 y 100. En estas turbinas se obtienen velocidades tangenciales muy reducidas. Los álabes tienen forma especial, aumentando su espesor a fin de que su cara posterior guíe mejor el chorro que atraviesa el rodete deslizándose en contacto con las paredes de los álabes, ya que de no ser así el chorro se despegaría de la cara posterior de los mismos, originando remolinos.

UNIVERSIDAD

SANTA MARÍA

Figura 32: Esquema de turbina Francis con rodete lento

Fuente: http://ieshuelin.com (2018)

2.4.6.6. Turbina Francis normal

Se caracterizan porque el diámetro D1 es ligeramente superior al del tubo de aspiración D3, El agua entra en el rodete radialmente y sale de él axialmente, entrando así en el tubo de aspiración. El valor de β 1 es del orden de 90°, (15°< α 1 < 30°) y se alcanza un *ns* comprendido entre 125 y 200 rpm. No existen apenas huelgos entre el distribuidor y la rueda. En estas turbinas, en el triángulo de velocidades a la entrada, al ser β 1 = 90°.

En el esquema mostrado se puede observar que el valor \bar{c}_1 es mayor. Resultando menor la tangencial \bar{u}_1 , los conductos entre alabes resultan más cortos, y en consecuencia, las perdidas por rozamiento son relativamente bajas. La cual aumenta el rendimiento considerablemente porque los rodetes trabajan con menos presión evitando grandes aceleraciones en su estructura.

UNIVERSIDAD

ÓLICA

de santa maría

Fuente: http://ieshuelin.com (2018)

2.4.6.7. Turbina Francis rápida y extra rápida

Permiten obtener elevadas velocidades de rotación para valores de *ns* comprendidos entre 225 y 500. El diámetro del rodete D1 es menor que el D3 del tubo de aspiración y el cambio de dirección del agua se efectúa más bruscamente que en las turbinas normales.

Fuente: <u>http://ieshuelin.com</u> (2018)

32

2.5. ESTUDIO TEÓRICO

2.5.1. Triangulo de velocidades

En turbinas de reacción, cuando se habla de triángulos de velocidad se está hablando de valores medios. Es decir, el triángulo de entrada depende (excepto en turbinas Francis radiales, donde, en cualquier punto de entrada del fluido en el álabe, el triángulo de velocidades es el mismo) de la posición radial y axial del punto de la sección de entrada elegido. Por esta razón, su cálculo tiene mucha menos profundidad teórica que en turbinas de acción.

Se asume que la Velocidad absoluta de entrada del agua en el rodete \vec{C}_1 Aplicando Bernoulli entre (a) y (1), con plano de comparación demostrado en la figura 35.

De acuerdo con la ecuación general, en el triángulo de entrada:

$$\overrightarrow{V_2} = \overrightarrow{U_2} + \overrightarrow{W_2}$$

33

Donde:

 V_2 : Velocidad del fluido.

 U_2 : Velocidad periférica del rodete.

 W_2 : Velocidad relativa.

Esto implica que la igualdad vectorial $\overrightarrow{V_2} = \overrightarrow{U_2} + \overrightarrow{W_2}$ se transforma en una igualdad escalar en la sección de entrada, ya que todas las velocidades están proyectadas sobre el mismo eje.

$$U_2 = U_1 = U$$

Para la velocidad de salida Aplicando Bernouli al agua en rotación entre (2) y (1) y considerando el plano de referencia que pasa por (2), resulta:

$$\frac{p_2}{\gamma} + 0 + \frac{w_2^2}{2g} - \frac{u_2^2}{2g} = \frac{p_1}{\gamma} + H_r + \frac{w_1^2}{2g} - \frac{w_1^2}{2g}$$
$$w_2^2 - w_1^2 + u_1^2 - u_2^2 = 2g\left(\frac{p_1 - p_2}{\gamma} + H_r\right) = 2g\left(\frac{p_1 - p_2}{\gamma} + H - H_d - H_g\right)$$

Y suponiendo régimen hidrostático entre (a') y (2) se tiene:

$$p_{atm} = p_2 + \gamma H_s \Rightarrow \frac{p_2}{\gamma} + H_g = \frac{P_{atm}}{\gamma}$$
$$w_2^2 - w_1^2 + u_1^2 - u_2^2 = 2g\left(\frac{p_{1-}p_{atm}}{\gamma} + H - H_d\right) = 2gH - 2g\left(H_d - \frac{p_{1-}p_{atm}}{\gamma}\right)$$
$$= 2gH - c_1^2$$

 $w_2^2 - u_2^2 = w_1^2 - u_1^2 + 2gH - c_1^2 = |w_1^2 = u_1^2 + c_1^2 - 2u_1u_1| = 2gH_n - 2u_1c_1cos\alpha_1$

$$w_2^2 = u_2^2 + 2\mathrm{gH}_n - 2\mathrm{u}_1 c_1 \cos\alpha_1$$

Velocidad absoluta de salida de agua \vec{C}_2

$$c_2^2 = w_2^2 + u_2^2 - 2u_2w_2\cos\beta_2 = w_2^2 + u_2^2 + 2w_2u_2 - 2w_2u_2 - 2w_2u_2\cos\beta_2 = u_2^2 + u_2^2 + 2w_2u_2 - 2w_2u_2\cos\beta_2 = u_2^2 + u_2^2 + 2w_2u_2 - 2w_2u_2 - 2w_2u_2\cos\beta_2 = u_2^2 + u_2^2 + 2w_2u_2 - 2w_2u_2 - 2w_2u_2 + 2w_2u_2 - 2w_2u_2 + 2w_2u_2 +$$

$$= (w_2 - u_2)^2 + 2w_2u_2(1 - \cos\beta_2) = (w_2 - u_2)^2 + 4w_2u_2sen^2\frac{\beta_2}{2}$$

34

2.5.2. Rendimiento Hidráulico de la Turbina de Reacción

Dado que se trabaja con valores medios de los triángulos, el estudio teórico con relación al rendimiento es sólo aproximado, De acuerdo con la ecuación de Euler, de forma general:

Publicación autorizada con fines académicos e investigativos En su investigación no olvide referenciar esta tesis

$$H_t = \frac{c_1 \cdot u_1 \cdot \cos\alpha_1 - c_2 \cdot u_2 \cdot \cos\alpha_2}{g}$$

Particularizada al caso de las turbinas Francis, donde, $\alpha 2^* \approx 90^\circ$,queda:

Donde:

- H: Altura neta de la turbina
- g: Aceleración de gravedad

Y se puede obtener el rendimiento hidráulico de las turbinas de reacción como:

$$\eta_h = \frac{H_t}{H} = \frac{c_1 \cdot u_1 \cdot \cos\alpha_1}{g \cdot H}$$

$$\eta_h = 2. c_1. u_1. \cos\alpha_1$$

donde el rendimiento hidráulico se expresa en función de los factores de velocidad absoluta y tangencial a la entrada, y el ángulo entre ambas velocidades.

En conclusión el rendimiento hidráulico de las turbinas de reacción es mejor a pequeños valores de $\alpha 1$.

2.5.3. Velocidad específica

La velocidad específica representada normalmente por *Ns*, también es denominada velocidad específica absoluta o velocidad angular específica. Corresponde al número de revoluciones por minuto (r.p.m) que daría una turbina semejante a la que se desea proyectar (de igual forma, pero dimensiones reducidas), la cual, instalada en un salto de 1 m. de altura, proporcionaría una potencia de 1 CV.

Se calcula como:

$$N_s = \frac{N\sqrt{P}}{H^{5/4}}$$

35

Publicación autorizada con fines académicos e investigativos En su investigación no olvide referenciar esta tesis

Donde:

 N_s : Número específico de revoluciones de potencia.

N: Revoluciones por minuto de la turbina [RPM]

P: Potencia mecánica en el eje de la turbina [CV]

H : Altura neta de la turbina [m]

De acuerdo con el valor de *Ns*, las turbinas hidráulicas se pueden clasificar según la siguiente tabla:

2 <n<sub>s<30</n<sub>	Pelton de una boquilla
30 <n<sub>s<60</n<sub>	Pelton de varias Boquillas
$60 < n_s < 200$	Francis Lenta
$n_{s} = 200$	Francis Normal
200< <i>n</i> _s <450	Francis Rápida
450< <i>n_s</i> < 500	Francis de Varios rodetes, o Hélice
500< <i>n</i> _s <1350	Hélice

Tabla 2: Valores de Ns para diversos tipos de turbinas

Fuente: Elaboración propia

2.5.4. Energía específica neta positiva de aspiración, NPSE

$$NPSE = \frac{P_{abs2} - P_{va}}{\rho_2} + \frac{v^2}{2} - g(H_r - H_2)$$

36

Donde:

Pabs2: es la presión estática absoluta del fluido

 P_{va} : presión de vapor absoluta de la sección 2

 P_2 : es la densidad del fluido

 v_1 : velocidad media de la sección 2

 H_r : altura o nivel de referencia de la maquina

 H_2 : atura de la sección 2

UNIVERSIDAD

SANTA MARÍA

2.5.5. Coeficiente de cavitación

Como se sabe la cavitación es el modo de falla crítico en las turbinas tipo Francis. La cavitación en las turbinas tipo Francis puede presentarse debido a una depresión que se forma en la salida del rotor debido al tubo de aspiración. El coeficiente de cavitación La energía específica neta positiva de aspiración corresponde a la energía de presión disponible en la entrada por encima de la presión de vaporización necesaria para llevar el fluido en la altura z, vencer las resistencias en ese recorrido y acelerar el fluido desde la velocidad en la entrada hasta la velocidad en el lugar de cavitación.

La energía específica neta positiva de aspiración (NPSE), está dada mediante la Ecuación:

limita la posición de la turbina respecto al nivel de aguas abajo. El coeficiente de cavitación está dado por la Ecuación:

$$\sigma_{nD} = \frac{H_{at} - H_s}{H}$$

Donde:

 H_{at} : es la presión atmosférica en metros de columna de agua H_s : es la altura de aspiración.

Figura 37: Esquema para definir el coeficiente de cavitación σ_{nD} .

2.5.6. Diámetro del tubo de aspiración D₃

El tubo de aspiración es un auténtico transformador de energía, ya que al originar a la salida del rodete una depresión, recupera no sólo la mayor parte de la energía

cinética $\frac{c_2^2}{2g}$

que lleva el agua a la salida, sino que también amplía la altura geométrica del salto en una distancia Hs igual a la existente entre la salida del rodete y el nivel del canal de desagüe aguas abajo; este órgano se conoce también como aspirador-difusor.

el Diámetro del tubo de aspiración D_3 es calculado de la siguiente relación:

$$D_3 = 1000 \sqrt{\frac{4Q}{\pi C_3}}$$

Donde:

D₃: Diámetro en el tubo de aspiración, en mm

Q: Caudal en metros cúbicos por segundo (m3 /seg)

 C_3 : Velocidad de salida, m/seg

Para determinar la velocidad de salida C3 utilizamos la ecuación:

$$C_3 = \sqrt{\frac{2.\,\mathrm{g.}\,K_c.\,H}{100}}$$

38

En donde:

 C_3 = Velocidad de salida, m/seg

g = Gravedad, en m/seg^2

H = Altura del salto en metros (m),

 K_c = Constante según la turbina, en tanto por uno; $\eta t/1$ 00

Considerar 4% para Francis Lenta, 6% para Francis Normal,12% para Francis

Rápida y 25% para la Francis Extra rápida.

2.5.7. Diámetro externo del rodete (D_1)

Para calcular el diámetro externo del rodete D_1 (Lenta, Normal, Rápida y Extra rápida) de la turbina, utilizamos la siguiente relación:

Se calcula con la siguiente ecuación:

$$D_1 = D_3. \left(0.4 + \frac{94.5}{N_s}\right)$$

Donde:

 D_1 : Diámetro externo del rodete, mm

D₃: Diámetro del tubo de aspiración, en mm

 N_s : Velocidad específica, en rpm

2.5.8. Diámetro interno del rodete (D_2)

Para calcular el diámetro externo del rodete D_2 (Lenta, Normal, Rápida y Extra rápida) de la turbina, utilizamos la siguiente relación:

Se calcula con la siguiente ecuación:

$$D_2 = D_3. \left(0.96 + 0.00038 x N_s \right)$$

39

Donde:

D₂: Diámetro interno del rodete, mm

D₃: Diámetro del tubo de aspiración, en mm

N_s: Velocidad específica, en rpm

2.5.9. Ancho de la corona directriz (b_0) para turbina Francis lenta

El ancho de la corona directriz se calcula según la turbina Francis seleccionada, utilizando la siguiente ecuación:

UNIVERSIDAD

OLICA

SANTA MARÍA

$$b_0 = D_1 \left[\frac{(N_s - 60)x0.07}{65} + k_L \right]$$

Donde:

 b_0 : Ancho de la corona directriz, en mm

 D_1 : Diámetro externo del rodete, en mm

 N_s : Velocidad específica, en rpm

 k_L : Constante de diseño para Francis Lenta, $0.08 \le k_L \le 0.119$ (seleccionar uno de los dos valores)

2.5.10. Ancho de la corona directriz (b_0) para turbina Francis normal

Se calcula con la siguiente ecuación:

$$b_0 = D_2 \left[\frac{(N_s - 125)x0.15}{100} + k_N \right]$$

Donde:

b₀: Ancho de la corona directriz, en mm

D₂ : Diámetro interno del rodete, en mm

 N_s : Velocidad específica, en rpm

 k_N : Constante de diseño para Francis Normal, $0.15 \le k_N \le 0.30$ (seleccionar uno de los dos valores)

2.5.11. Ancho de la corona directriz (b_0) para turbina Francis rápida

Se calcula con la siguiente ecuación:

$$b_0 = D_1 \left[\frac{(N_s - 225)x0.22}{125} + k_R \right]$$

40

Publicación autorizada con fines académicos e investigativos En su investigación no olvide referenciar esta tesis

Donde:

b₀: Ancho de la corona directriz, en mm

D₁ : Diámetro externo del rodete, en mm

N_s: Velocidad específica, en rpm

 $k_R\,$: Constante de diseño para Francis rápida, $0.1582 \leq k_R \leq 0.30$

(seleccionar uno de los dos valores)

2.5.12. Ancho de la corona directriz (b_0) para turbina Francis extra rápida

Se calcula con la siguiente ecuación:

$$b_0 = D_1 \left[\frac{(N_s - 225)x0.19}{100} + k_{ER} \right]$$

Donde:

b₀: Ancho de la corona directriz, en mm

D₁ : Diámetro externo del rodete, en mm

N_s: Velocidad específica, en rpm

 $k_{ER} : Constante de diseño para Francis extra rápida, 0.1807 \le k_{ER} \le 0.52$ (seleccionar uno de los dos valores)

2.5.13. Calculo del número de álabes para turbina Francis lenta

Se calcula con la siguiente ecuación:

$$Z_{FL} = 18 - \left[\frac{(N_s - 60)}{65}\right]$$

Donde:

 Z_{FL} : Número de alabes para una turbina Francis lenta

N_s: Velocidad específica, en rpm

2.5.14. Calculo del número de alabes para turbina Francis normal

Se calcula con la siguiente ecuación:

$$Z_{FN} = 17 - \left[\frac{(N_s - 125)x^2}{100}\right]$$

UNIVERSIDAD

de santa maría

CATÓLICA

Donde:

 Z_{FN} : Número de alabes para una turbina Francis normal

 N_s : Velocidad específica, en rpm

2.5.15. Calculo del número de alabes para turbina Francis rápida

Se calcula con la siguiente ecuación:

$$Z_{FR} = 15 - \left[\frac{(N_s - 225)x^2}{125}\right]$$

Donde:

 Z_{FR} : Número de alabes para una turbina Francis rápida

 N_s : Velocidad específica, en rpm

2.5.16. Calculo del número de alabes para turbina Francis extra rápida

Se calcula con la siguiente ecuación:

$$Z_{FER} = 13 - \left[\frac{(N_s - 350)}{100}\right]$$

Donde:

Z_{FER}: Número de alabes para una turbina Francis extra rápida

N_s: Velocidad específica, en rpm

Figura 38: Trayectoria de la vena fluida en el distribuidor.

UNIVERSIDAD

OLICA

SANTA MARÍA

Fuente: M. Eisenring, (1991)

2.6. CURVAS CARACTERÍSTICAS DE LAS TURBINAS FRANCIS

Para llegar a conocer bien las particularidades del funcionamiento de un determinado tipo de turbina, es necesario realizar con ella un gran número de ensayos, que abarquen la totalidad de las condiciones posibles de trabajo, que vienen determinadas por la variabilidad del salto, de la carga (par resistente), de la velocidad, etc.

Para cada valor del grado de admisión α , que se obtiene variando la posición de las directrices móviles del distribuidor en las turbinas de reacción, se realizan, (con ayuda de un freno y a diferentes velocidades), una serie de medidas procurando mantener constante el valor de salto neto (Fernández Díez, 1996).

Con ayuda de las tablas de valores obtenidas en laboratorio, se pueden construir las familias de curvas definidas por las siguientes ecuaciones, mediante el ensayo elemental, para un grado de apertura del distribuidor α , determinado:

$$Q = f1(N, \alpha)$$
$$T = f2(N, \alpha)$$
$$P = f3(N; \alpha)$$

43

Donde:

Q: Caudal

T: Par mecánico

P: Potencia mecánica o al eje

N: Velocidad de Giro [RPM]

 α : Angulo del distribuidor [%]

En las que se toman los valores de α como parámetros, y los de las velocidades de rotación N como variables independientes.

2.6.1. Curvas de potencia (P)

Parten todas de un origen común, Figura 28, cuando N = 0 y tienen una forma casi parabólica, con un máximo que se corresponde para cada valor de α con el rendimiento óptimo. Los puntos de corte con el eje de velocidades se corresponden con las velocidades de embalamiento, distintas para cada valor de α , estando en ese momento sometida la turbina, únicamente, al freno impuesto por las resistencias pasivas, tanto mecánicas como hidráulicas (Fernández Díez, 1996).

Figura 39: Curva característica de potencia para turbina Francis

Fuente: Fernández, Pedro D. (1996)

44

2.6.2. Curvas de par mecánico (T)

Aunque poco utilizadas, por los constructores de turbinas, son de gran utilidad en el estudio de la regulación y del acoplamiento mecánico de la turbina y el alternador. Estas son rectas, siendo la ordenada en el origen el par de arranque, y la abscisa de ordenada nula la velocidad de embalamiento. El par de arranque de las turbinas hidráulicas es aproximadamente el doble que el de régimen, excepto para las turbinas hélice; esta propiedad es de gran interés, por cuanto permite el arranque en carga cuando el par resistente en el arranque es mayor que el de régimen (Fernández Díez, 1996).

Fuente: Carlos J. Renedo Estébanez (1997)

2.6.3. Curvas de caudal (Q)

Las curvas de caudal tienen forma lineal, el caudal varía con respecto a la velocidad específica, La inclinación de estas curvas tiende a ser decreciente para las turbinas Francis lentas y normales, sin embargo, para lar turbinas Francis rápidas sus curvas son crecientes, lo cual significa que a velocidad constante y salto variable, la capacidad de absorción de la rueda es tanto mayor cuanto menor sea el salto, lo que constituye una gran ventaja para saltos pequeños (Fernández Díez, 1996).

Figura 41: Curvas de caudal para los diferentes tipos de turbinas Francis

Fuente: Fernández, Pedro D. (1996)

2.6.4. Curvas de rendimiento en función de la velocidad de giro (η)

El rendimiento puede se obtiene a partir la relación entre la potencia hidráulica y la mecánica según la siguiente relación:

$$\eta = \frac{P}{P_h}$$

Donde:

P: Potencia mecánica o al eje [W]

 P_h : potencia hidráulica [W]

 η : Eficiencia [%]

La potencia al eje desarrollada por la turbina viene dada por:

$$P = \omega T$$

Donde:

P: Potencia mecánica o al eje [W]

 ω : Velocidad angular [rad/s]

T: Par mecánico [N m]

La potencia hidráulica, es la potencia que dispone el fluido para ceder a la turbomáquina, el cual viene dada por:

$$P_h = \rho g Q H = \gamma Q H$$

Donde:

 P_h : potencia hidráulica [W]

 ρ : Densidad del fluido [kg/m3]

g: Aceleración dela gravedad [m/s2]

 γ : Peso específico del fluido [N/m3]

Q: Caudal (en m3/s)

"El rendimiento es máximo cuando para una velocidad de giro optimo N_0 para una altura constante a la que se realiza el ensayo" (Viedma Robles & Zamora Parra, 1997).

Figura 42: Curva de rendimiento en función de la velocidad de giro

Fuente: Viedma Robles & Zamora Parra (2018)

Las velocidades de embalamiento están relacionadas con la óptima, en general por relaciones es la siguiente:

$$N_e \approx 2.0 N_0$$

Donde:

 N_e : Velocidad de giro de embalamiento [RPM] N_0 : velocidad de giro optima [RPM]

2.6.5. Curvas de colina

La mayor o menor proximidad de las curvas en colina da una idea sobre el campo de aplicación de la turbina ensayada. Cuando estas curvas estén muy próximas, el rendimiento variará mucho al modificar las condiciones de funcionamiento, por lo que será conveniente utilizar la turbina en aquellas zonas en donde las curvas se encuentren muy distanciadas, pues de este modo, el rendimiento variará poco al modificar las condiciones de funcionamiento (Fernández Díez, 1996).

Las curvas en colina, o en concha, se obtienen a partir de una serie de ensayos elementales. Al ser constante el salto neto, el rendimiento será una función simultánea de las variables P y N, o de las Q y N, es decir: $\eta = F1$ (P, N); $\eta = F2$ (Q, N).

Figura 43: Colinas de rendimientos

Fuente: Fernández, Pedro D. (1996)

2.6.6. Curvas de rendimiento para H y N constantes (η)

La forma habitual de funcionamiento de las turbinas industriales es suministrar, en cada instante, la potencia que la exige el alternador, manteniendo al mismo tiempo constante la frecuencia y, por lo tanto, el número de revoluciones. Este es el motivo de que sea interesante estudiar las variaciones del rendimiento al variar la potencia o el caudal, manteniendo constantes el salto H y la velocidad N, consiguiéndose rendimientos máximos del orden del 90% (Fernández Díez, 1996).

Para el caso de la micro generación, el rendimiento de las turbinas va entre 60% y 80%. (Sepúlveda, 2012)

Figura 44: Curvas de rendimiento, H y N constantes para distintas turbinas.

Fuente: Fernández, Pedro D. (1996)

CAPITULO III

3. DISEÑO Y SELECCIÓN DE COMPONENTES DEL MÓDULO DE TURBINA FRANCIS

3.1. ALTERNATIVAS DE SELECCIÓN DEL MÓDULO DE TURBINA FRANCIS

Entre los diferentes modelos de módulos de turbinas Francis, entre los más relevantes fabricantes a nivel mundial se encuentran:

- GUNT, de Procedencia Alemana.
- TECQUIPMENT, de procedencia americana.
- SSEDUMACHINE, de procedencia Beijing china.

La comparativa de costos estimados considerando la instalación, puesta en marcha en el campus de la universidad.

				and the second se	
		MA	TRIZ DE P	ONDERACIÓN	
			E	LEMENTOS DE EV	ALUACIÓN
			GUNT	TECQUIPMENT	SSEDUMACHINE
]	FACTOR DE PONDERACI	ÓN			
1	calidad	20	20	18	15
2	Costo	40	8	20	40
3	Funcionamiento	30	15	22	29
4	Mantenimiento	10	9	8	9
I	Ponderación final de	10	52	68	93
cri	terios:	0	6		

Tabla 3 Matriz de ponderación para la selección del módulo T. Francis

Fuente: Elaboración Propia. (2018)

Alternativa 1:

Fuente: https://www.gunt.de (2018)

Alternativa 2:

Figura 46: Módulo de turbina Francis TecQuipment Ltd.

Fuente: https://www.tecquipment.com (2018)

Alternativa 3:

Figura 47: Módulo de turbina Francis propuesto.

Fuente: http://www.ssedumachine.com/ (2018)

Marca:	Especificaciones Técnicas:	Costo Aprox.
GUNT	 Potencia: aprox. 350W a 1500min -1, 270L/min, H=15m Número de revoluciones máx.: 3000min -1 Rotor: 11 álabes, diámetro medio: 60mm. Distribuidor: 7 álabes Ángulo de incidencia: 020° Rangos de medición Par: 09,81Nm Presión: 04bar abs. Número de revoluciones: 04000min-1 LxAnxAl: 510x490x410mm Peso: aprox. 38kg 	S/59.062,00
TECQUIPMENT	 Francis turbine works and tests its performance Nett dimensions: 400 mm x 360 mm x 700 mm Nett weight:11 kg Maximum delivery pressure:2.5 Bar (nominal) Guide vanes: 6 off , adjustable from fully shut to fully open Impeller: 80 mm diameter, 10 blades Turbine speed: Maximum 1100 rev.min–1 Turbine power: Nominal maximum 3 Watts 	S/52.355,00
SSEDUMACHINE	 output: 12W at n=1100min-1, approx. 40L/min, rotor, 7 blades blade width: 5mm external diameter: 50mm guide vanes: 6 vanes, adjustable (20 stages) Measuring ranges: braking force (spring balance): 10N pressure: 01,0bar Dimensions and Weight: LxWxH: 400x400x630mm Weight: approx. 17kg 	S/13.382,10

Tabla 4 Comparativa de costos para la selección de módulo de turbina Francis

UNIVERSIDAD

DE SANTA MARÍA

CATÓLICA

Fuente: Elaboración Propia.

3.2. DISEÑO DE TURBINA FRANCIS.

3.2.1. Consideraciones preliminares

Para el diseño se considera como las siguientes consideraciones preliminares:

- Potencia : 12 Watts.
- Altura : 8 metros.
- Velocidad Angular : 1100 rpm.

Debido a que el modulo turbina Francis tiene fines demostrativos sobre su principio de operación, este se fabricó en metacrilato y policarbonato (por inyección), el cual es un plástico de ingeniería que facilita la visualización del área de trabajo haciéndolo más didáctico y con un diseño hidrodinámico que permite bajas perdidas hidráulicas que garantizan un buen rendimiento.

3.3. SELECCIÓN DE COMPONENTES DEL MÓDULO DE TURBINA FRANCIS

El módulo de pruebas de turbina Francis, consta de diferentes componentes que lo conforman, entre las principales:

3.3.1. Rotámetro

Para la medición del caudal en módulo de turbina Francis se debe seleccionar un instrumento para medir el caudal volumétrico del fluido que en este caso es agua.

Características:

- Rango de flujo: 10 a 130LPM.
- Rango de temperatura: -28°C a 115°C
- Diámetro entrada y salida: 1 pulgada.
- Rango de presión: hasta 3500 PSI/241 BARS MAX.
- Escalas duales de lectura directa de fácil lectura (GPM / LPM)
- Precisión: ±2 %
- unión magnética que elimina la necesidad de uniones mecánicas.
- Ejemplos de aplicación: Agua desionizada, Líquidos blanqueadores, Control de flujo de químicos, Control de flujo de aceite API
- Escala/protección rotable de 360° para facilitar la lectura.

UNIVERSIDAD Católica De Santa María

Figura 48: Selección de rotámetro

Flow Meters	
	Mediand Medidores de líquidos corrosivos y cáusticos/aceite API
CPM-LPM 130 100 100 100 100 100 100 100 100 100	 ENERTICIOS No se necesitan dispositivos electrónicos para obtener una lactura Se puede instalar en cualquier posición/orientación sin comprometer la precisión El producto con mejor lectura de au clase No necesita tuberias ni accesorios especiales para estabiliar el flujo turbulento La unión magnética elimina la necesidad de uniones mecánicas que se desgastan, aflojan y tienen pérdidas a lo largo de la vida útil de est competitivo medidor Opciones de escala personalizables para cubrir los regulsitos precisos de cada aplicación El producto se añadió a <u>Mis Favoritos</u>.

Fuente: http://www.buyhedland.com/ (2018)

Figura 49: Rotámetro industrial de agua y otros fluidos de 10 - 115LPM

Fuente: http://www.buyhedland.com/ (2018)

• Se opta por un rotámetro de rango: 10-130 LPM, hilo hembra 1" NPT de material aluminio anodizado, acero inoxidable. Relativamente inalterable debido a golpes o vibraciones.

3.3.2. Manómetro

Para la medición de altura de agua que ingresa al módulo de turbina Francis correspondiente a la presión de la bomba aplicada a la turbina y para una fácil visualización del dial para la toma de datos más exactos se debe seleccionar un manómetro de tipo Bourdon con los siguientes requerimientos y características necesarias como se describe a continuación en las características técnicas:

- Rango de presión en Bar: 0 a 2 Bar (por seguridad y extender la vida útil del instrumento debe ser dos veces la presión de trabajo).
- Rango de presión en psi: 0 a 30 psi (por seguridad y extender la vida útil del instrumento debe ser dos veces la presión de trabajo).
 - Rango de temperatura: $-40^{\circ}C+65^{\circ}C$
- Entorno: Vibración y pulsaciones por bombeo hidráulico.
- Material de la caja:
- Exactitud: +/- 2% del total de la escala.

Inox

- Conexión: Bronce 1/2" N.P.T. Inferior.
- Diámetro del dial:
- Recargable:

•

- Procedencia:
- 4" Si (glicerina) Italia

Figura 50: Manómetro

Fuente: Elaboración Propia. (2018)

Caracte técnicas	risticas	técnicas	eristicas S	c PA		
Modelo- <i>Madela</i>	MGS18 DN40-50	MGS18 DN63	MGS18 DN100-150	MGS19 DN100-150	MGS20 DN63	
Categoria ATEX Categoria ATEX			2GD	2GD		
Escalas Escalas	02,5/040 bar	01/01000 bar y vacio 01/01000 bar e vácuo	00,6/01600 bar y vacio 00,6/01600 bar e vácuo	01/01000 bar y vacio 01/01000 bar e vácuo	01/01000 bar y vacio 01/01000 bar e vácuo	
Presión de trabajo (Referida al V.F.E.) Pressão de trabalho (valor final de Escala)	max 75%	max 75%	max 100%	max 100%	max 75%	
Tipo de precisión (según EN 837-1) <i>Classe de precissão</i> (segundo EN 837-1)	1,6	1,6	1,01,6	1,0	1,6	
Grado de protección Grau de proteção	IP 5567	IP 5567	IP 5567	IP 5567	IP 5567	
Tipo de montaje Tipo de montagem	┎╔┣	Ĵ₽Ĵ₽₽	<u>j</u> rjrr			
Principales características Principais Características	Posibilidad de llenado con fluido amortzante Possibilidad de enchimento com líquido amortecedor	Posibilidad de llenado con fluido amortizante Possibilidade de enchimento com líquido amortecedor	Posibilidad de lenado con fluido antótizante Contorne a la norma EN837-1 Sepuridad constructiva ATEX tipo "C" Possibilidad de lenchimento com líquido antorise/edor mante anorma EN837-1 Sepurança construtiva ATEX tipo "C"	Sobrepresión hasta 4 veces el valor fondo escala conforme a la norma EN837-1 Seguirada constructiva ATEX tipa °C" Sobre pressão 4 vezes o valor final de escala A tende a norma EN837-1 Seguirança construtiva ATEX tipo °C"	Posibilidad de llenado con fluido amortizante Conforme a la norma EN837-1 Ejecución Solid-Front Possibilidade de enchimento com figuido amortecedor Anende a norma EN837-1 Solid-Front*	
Modelo- <i>Madela</i>	MGS20 DN100-150	MGS21 DN100-150	MGS30 DN125	MGS30 EXTRA DN125	MGS8 DN250	MGS44 DN100
Categoria ATEX Categoria ATEX	2GD	2GD	7.		2	2GD IIB
Escalas	00,6/01600 bar y vacio	01/01000 baR y vacío	015/030000 ost y vacio	030/015000 psi y vacio	01/01000 bar	01/0400 bar

Figura 51: Selección del manómetro.

VERSIDAD

SANTA MARÍA

Fuente: https://www.nuovafima.com/ (2018)

Se opta por un manómetro MIT3 con un rango de 2 Bar con fluido amortiguador de glicerina para eliminar pulsaciones de la bomba.

3.3.3. Freno de tipo Prony

Para medir el par mecánico de la turbina Francis y para absorber la potencia generada por la turbina se optó por la selección de freno tipo Prony el cual es ampliamente usado y cuyo principio de funcionamiento es el efecto de frenado por fricción. compuesto por un par de balanzas de muelle acopladas a una cinta de frenado enrollada alrededor de una rueda de polea accionada por el rodete de la turbina. La carga de la turbina se modifica tensionando ambas balanzas de muelle, lo que incrementa la fricción en la rueda de polea. La fuerza de frenado se determina a partir de la diferencia en las lecturas de las 2 balanzas de muelle y el par calculado a partir de la multiplicación de esta fuerza por el radio de la polea.

Fuente:http://www.mdf.fisica.cnba.uba.ar/limbo/index.php?option=content&task=view&i

d=64. (2014)

	Lp	Lm	LO	S	División	Capacidad
atas I.O	mm	mm	mm	mm	Ν	N
ction d(0)		305	225	80	0,01 N	1
	300	325	225	100	0,02 N	3
	300	325	325	100	0.05 N	6
s '	300	325	325	100	0,1 N	10
Druck	300	325	325	100	0,2 N	25
Pressure	440	510	370	140	0,5	50
	440	510	370	140	1	100
	440	510	370	140	2	200
۰Lp	370	460	370	90	5	500

Figura 53: Selección de balanza resorte

Fuente: www.pce-iberica.es (2016)

Para la potencia de diseño se consideró que el torque no supere los 50 Ncm con un radio de brazo de 5 cm, por ello se selecciona dos balanzas de resorte tipo Prony con capacidad máxima de 10 N, que se considera ideal para las pruebas con la turbina.

3.3.4. Rodete Francis

En la imagen se muestra el rodete original del módulo diseñado en Solidworks, dotado de los alabes móviles en la periferia en forma de persiana, y cuyo paso de agua se puede modificar mediante un vástago regulador los cuales fueron diseñados e impresos en 3D. Según el diseño del rodete Francis, se ha optado por la fabricación de impresión en 3D en polietileno de alta densidad para uso de ingeniería, evitando así las complejidades de la manufactura convencional y

UNIVERSIDAD Católica De Santa María

la corrosión por partes húmedas, con una mayor resistencia química y por ende un reducido costo de mantenimiento.

'Figura 54: Rodete de Turbina Francis

Fuente: Elaboración propia. (2018)

3.3.5. Tablero Eléctrico y Control

Para el arranque, parada y protección de nuestro motor se seleccionó un tablero que tanto el cofre como la compuerta están construidos en láminas de acero debidamente rotulado y con sus instructivos. cuyo espesor y acabado son apropiados para resistir esfuerzos mecánicos, eléctricos y térmicos, así como efectos de humedad y corrosión.

Las partes que conforman el tablero de control son:

- Contactor 16Amp. Marca: ABB
- Interruptor térmico 16Amp. Marca: ABB
- Pulsador normalmente abierto (Start)
- Pulsador normalmente cerrado (Stop)
- Pulsador de emergencia tipo hongo
- Bomba de 1.5 Hp

Acoplado mediante un cable de 70mm libre de alógeno a un control de mando móvil para un mejor manejo desde cualquier distancia. esta consiste en una caja botonera (start, stop, parada de emergencia) con protección IP67.

Figura 55: Componentes físicos eléctricos

Fuente: Elaboración propia. (2018)

El diagrama eléctrico es la representación gráfica de la instalación eléctrica. En él se indican todos los componentes activos y pasivos de la instalación. Para la obtención del diagrama unifilar se procedió a inspeccionar y verificar las características de cada componente que lo forman desde la toma de alimentación hasta el mando de control.

En el diagrama se observa todos los componentes eléctricos del módulo.

Figura 56: Diagrama Unifilar del Módulo de Turbina Francis

Fuente: Elaboración propia (2018)

3.3.6. Electrobomba Centrifuga

En la imagen se observa la electrobomba, cuya función principal es simular la caída de agua y poner en funcionamiento la turbina Francis.

• Calculo para la selección de la electrobomba

$$Pb = \frac{Q_b H_b}{76 \ \eta_b}$$

Donde:

Pb: Potencia de la bomba [HP]

 Q_b : Caudal de la bomba [LPS]

H_b: Altura de la bomba [m]

 η_b : Eficiencia de la bomba [%]

Para evitar pérdidas en la tubería se elige una bomba de 1.5 HP, esta podrá ser regulada por la válvula de desfogue que se dirige al tanque del módulo.

Figura 57: Electrobomba PENTAX 1.5 HP, 1" x 1".

Fuente: http://www.pentax-pumps.it (2018)

CAPITULO IV

4. PRUEBAS Y RESULTADOS

A continuación, se presentan los resultados de la investigación en base a la información de las pruebas realizadas en el módulo de turbina Francis.

4.1. CURVAS CARACTERÍSTICAS DEL MÓDULO DE TURBINA FRANCIS

La caracterización del módulo de turbina Francis se realizó para diferentes alturas y aperturas de los alabes, se logra generar una base de datos mediante instrumentos propios del módulo (Manómetro, Rotámetro y Freno Prony) e instrumentos adicionales (Tacómetro) para un estudio cualitativo y caracterización de la Turbina en estudio (Par Mecánico, Potencia Mecánica o al eje y Eficiencia).

Gráfico 1: Curva característica de potencia en el eje de la turbina

Fuente: https://www.gunt.de (2018)

Tabla 5 Principales características del módulo de turbina Francis

Ítem	Detalle
Radio de la polea (tambor)	50 mm
Potencia Nominal de salida	12 watts a 1100 rpm
Velocidad máxima	2500 rpm

Fuente: Elaboración propia

Para la obtención de los datos en el módulo se consideran las siguientes ecuaciones:

a) Par mecánico

El par es el radio del tambor (polea) multiplicado por la fuerza:

T = (F1 - F2)xR

Donde:

T: Par mecánico (N m)

R: Radio de la polea (m)

F: Fuerza total (N)

F1: Fuerza de balanza lado derecho (N)

F2: Fuerza de balanza lado izquierdo (N)

b) Potencia Hidráulica

Representada con la siguiente ecuación:

 $P_h = \rho g Q H = \gamma Q H$

Donde:

 P_h : Potencia hidráulica (W)

 ρ : Densidad del fluido (para el caso del agua 1000 kg/m3)

g: Aceleración dela gravedad (para este caso se adopta: 9.81 m/s2)

 γ : Peso específico del fluido (para el caso del agua 9810 N/m3)

Q: Caudal medida en el rotámetro (en m3/s, 1 LPM = 1.66667e-5 m3/s),

H: Salto o altura disponible (m)

El salto o altura disponible es medida por el manómetro de glicerina con la siguiente relación:

$$H = \frac{P_{man}}{gp}$$

Donde:

 P_{man} : Presión manométrica medida en el manómetro (en Pa, 1 Bar = 100000 Pa)

c) Potencia Mecánica

Representada con la siguiente ecuación:

$$P = \omega T$$

61

Publicación autorizada con fines académicos e investigativos En su investigación no olvide referenciar esta tesis

Donde:

- P: Potencia mecánica (vatios)
- T : Par mecánico (N m)
- ω : Velocidad angular (rad/s)

La relación de la velocidad angular está relacionada con la velocidad de rotación medida del tacómetro con la siguiente ecuación:

$$\omega = \frac{2\pi N}{60}$$

Donde:

N: Velocidad de rotación del rodete Pelton (RPM)

d) Rendimiento

Representada con la siguiente ecuación:

$$\eta = \frac{P}{P_h} x 100$$

 η : Eficiencia (%)

P : Potencia mecánica consumida por el freno Prony (W)

62

 P_h : Potencia hidráulica (W)

La velocidad de rotación (N) ha sido medida con un tacómetro sin contacto, todos los resultados realizados se muestran en las siguientes tablas.

4.1.1. Curva Característica de Turbina Francis con Q= 10LPM con aperturas de 25% 50% y 100%

Gráfico Nº 1 Curva característica de módulo turbina Francis Q=10LPM, a=25%

Gráfico Nº 2 Curva característica de módulo turbina Francis Q=10LPM, a=50%

Fuente: Elaboración Propia

Gráfico Nº 3 Curva característica de módulo turbina Francis Q=10LPM, a=100%

UNIVERSIDAD

DE SANTA MARÍA

CATÓLICA

4.1.2. Curva Característica de Turbina Francis con Q= 20LPM con aperturas de 25% 50% y 100%

Gráfico Nº 4 Curva característica de módulo turbina Francis Q=20LPM, a=25%

Fuente: Elaboración Propia

Gráfico Nº 5 Curva característica de módulo turbina Francis Q=20LPM, a=50%

UNIVERSIDAD

DE SANTA MARÍA

CATÓLICA

Gráfico Nº 6 Curva característica de módulo turbina Francis Q=20LPM, a=100%

4.1.3. Curva Característica de Turbina Francis con Q= 35LPM con aperturas de 25% 50% y 100%

UNIVERSIDAD

de santa maría

CATÓLICA

Gráfico Nº 7 Curva característica de módulo turbina Francis Q=35LPM, a=25%

Fuente: Elaboración Propia

Gráfico Nº 8 Curva característica de módulo turbina Francis Q=35LPM, a=50%

Fuente: Elaboración Propia

Gráfico Nº 9 Curva característica de módulo turbina Francis Q=35LPM, a=100%

UNIVERSIDAD

DE SANTA MARÍA

CATÓLICA

- 4.1.4. Curva Característica de Turbina Francis con Q= 50LPM con aperturas de 25% 50% y 100%

Gráfico Nº 10 Curva característica de módulo turbina Francis Q=50LPM, a=25%

Fuente: Elaboración Propia

Gráfico Nº 12 Curva característica de módulo turbina Francis Q=50LPM, a=100%

Fuente: Elaboración Propia

4.1.5. Curva Característica de Turbina Francis con Q= 60LPM con aperturas de 25% 50% y 100%

UNIVERSIDAD

de santa maría

CATÓLICA

Gráfico Nº 13 Curva característica de módulo turbina Francis Q=60LPM, a=25%

Gráfico Nº 14 Curva característica de módulo turbina Francis Q=60LPM, a=50%

Fuente: Elaboración Propia

Gráfico Nº 15 Curva característica de módulo turbina Francis Q=60LPM, a=100%

UNIVERSIDAD

DE SANTA MARÍA

CATÓLICA

4.1.6. Curva Característica de Turbina Francis con Q= 100LPM con aperturas de 25% 50% y 100%

Gráfico Nº 16 Curva característica de módulo turbina Francis Q=100LPM, a=25%

Fuente: Elaboración Propia

}

Gráfico Nº 17 Curva característica de módulo turbina Francis Q=100LPM, a=50%

UNIVERSIDAD

DE SANTA MARÍA

CATÓLICA

Gráfico Nº 18 Curva característica de módulo turbina Francis Q=100LPM, a=100%

Fuente: Elaboración Propia

4.1.7. Gráfico de eficiencia de módulo turbina Francis

Gráfico Nº 19 Curva de eficiencias de módulo turbina Francis.

Fuente: Elaboración Propia

4.1.8. Gráfico de potencia de modulo turbina Francis.

Gráfico Nº 20 Curva de potencia mecánica de módulo turbina Francis

4.1.9. Gráfico de eficiencia optimo a RPM constantes de modulo turbina Francis.

UNIVERSIDAD

de santa maría

CATÓLICA

Gráfico Nº 21 Curva de eficiencia optima a RPM constantes de módulo turbina Francis

Fuente: Elaboración Propia

CAPÍTULO V

5. COSTOS DE IMPLEMENTACIÓN DEL MÓDULO DE TURBINA FRANCIS

Antes de realizar un proyecto de diseño e implementación, es importante conocer los costos de los equipos que conformaran dicho proyecto para poder llevar el análisis económico del mismo

Por eso el modelo de turbina Francis, como tal no tiene un ingreso económico fijo, pues su fin es la toma de datos de los distintos parámetros y comportamientos mismos de las maquinas hidráulicas. En este capítulo se mostrará los cuadros que detallan que accesorios y partes componen el modulo con sus costos directos e indirectos de la implementación del módulo de turbina Francis.

5.1. COMPONENTES OBTENIDOS POR COMPRA DIRECTA E INDIRECTA

En las siguientes tablas presentaremos los costos de los componentes obtenidos por compra directa (manómetros, rotámetro etc.), también los obtenidos por compra indirecta (manufactura, trabajo de calderería, trazado, corte, soldadura y ensamble del módulo) costo del proceso de transformación a producto terminado y en la última tabla se mostrará el costo total del equipo.

Para obtener estos costos se considera los tiempos de fabricación del equipo desde su inicio. El costo de fabricación de cada componente del módulo proviene del producto del costo de fabricación por el tiempo en horas que demoraría la fabricación y considerando cada proceso de fabricación por separado, es decir, para fabricar una pieza se necesitan de varios procesos (corte, tornado, fresado, soldadura, pintado etc.) y el costo de fabricación total de una pieza es la suma de todos los costos de fabricación por proceso.

Por ejemplo, para la fabricación del tanque de agua del módulo de turbina Francis se tuvo que emplear un tiempo de 9.5 horas de trabajo de mano de obra y equipos necesarios para su elaboración, 1 hora de trazado, 1 hora de corte de plancha, uso de cizalla, 1.5 horas de trabajo de plegado en una plegadora industrial y 6 horas de soldadura de los contornos del tanque para un sellado correcto. Si el costo por hora de la cizalla es de 10 soles y el de la plegadora es 40 soles y el de una máquina de soldar es de 28 soles, entonces se determinará el costo de mano de obra por jornada y alquiler de equipos para la fabricación del tanque.

5.2. COSTOS DIRECTOS

En la siguiente tabla presentaremos los costos de los componentes que tienen una relación directa a la realización y producción del módulo de turbina Francis que incurre directamente en el costo de producción por ende son colocados en la siguiente categoría de compra directa.

Ítem	Cantidad	Descripción	Material	Costo Unitario (s/.)	Costo Total (s/.)
1	1	Turbina tipo Francis	Metacrilato y polietileno de alta densidad	7930,00	7930,00
1	1	Tubo cuadrado 1 ¼ electrosoldado	Acero al carbono laminado en caliente	60,00	60,00
4	1	Manómetro con glicerina 4"	Varios	245,00	245,00
5	1	Manómetro con glicerina 2.5"	Varios	75,00	75,00
6	1	Plancha de aluminio estriada	Plancha aluminio	60,00	60,00
7	1	Placa ajuste de Freno en aluminio	Plancha aluminio	30,00	30,00
8	1	Rotámetro SEACO. USA	Varios	980,00	980,00
10	1	Manguera corrugada de alta presión flexible	Polietileno, de embocadura de 1 1/4	68,50	68,50
11	1	Manguera corrugada de descarga POWERTEC 70143	Polietileno	26,00	26,00
12	1	Mando de control móvil start/stop con IP67	Varios	50,00	50,00
13	3	Rodamiento SKF	Acero	53,00	159,00
15	1	Térmico ABB	Varios	50,00	50,00
16	2	Unión universal 1/2" y válvulas de drenaje	PVC	15,50	31,00
18	6	Abrazaderas 1 ¼ acero	Acero	5,00	30,00
19	1	Bomba centrifuga	Varios	700,00	700,00
20	1	Tubo de 1"	PVC	32,00	32,00
21	10	Codos de 1"	PVC	4,20	42,00
22	1	Unión T de 1"	PVC	5,40	5,40
23	2	Válvula de Compuerta bronce de 1" CIM	Bronce	58,00	116,00
24	1	Reductor de 1" a 3/4"	Bronce	3,20	3,20
25	2	Niple Metálico de 1"	Acero inox	12,50	25,00
26	2	Unión Universal de 1"	PVC	12,50	25,00
27	2	Tapón de 1"	PVC	3,50	7,00
29	4	Garrucha Nylon Plataforma con Freno 2 1/2	Varios	17,50	70,00
30	1	Riel Din ranurado	Acero Dorado	8,00	8,00
31	4	Tuercas Hexagonal Milimétrica	Acero	0,50	2,00
32	4	Terminales	Varios	2,00	8,00
33	6	Borneras	Varios	4,00	24,00
34	3	Cables Eléctricos vulcanizados	Varios	20,00	60,00
35	1	Botoneras de Encendido/Apagado/parada de emergencia	Varios	40,00	40,00
36	1	Caja Eléctrica metálica IP67	Varios	50,00	50,00
37	1	Contactor ABB	Varios	95,00	95,00
			TO	$\Gamma AL \overline{(S/.)}$	11107,10

Tabla 6 Costos de Componentes - Compra Directa

Fuente: Elaboración Propia

5.3. COSTOS INDIRECTOS

Ítem	Cantidad	Descripción	Material	Costo Unitario (s/.)	Costo Total (s/.)
1	1	Construcción de Estructura	Tubo cuadrado 1 ¼ electrosoldado	500,00	500,00
2	1	Fabricación de tanque	Plancha de acero 1/8	600,00	600,00
3	1	Corte de plancha de aluminio estriada y fresado	Plancha aluminio	110,00	110,00
4	1	Corte y fresado de Placa ajuste de Freno en aluminio	Plancha de aluminio	95,00	95,00
5		Refuerzo placa base de la turbina	Metacrilato	70,00	70,00
6	1	Fabricación de Soportes de tubería	Tubo electrosoldado 1/4	60,00	120,00
7	1	Fabricación Espiga doble 1 1/4	Acero Inox	120,00	120,00
8	1	Pintado de estructura y tanque	Pintura martillada	150,00	150,00
9	2	Fabricación de tapas de drenaje	bronce	35,00	70,00
10	1	Modificación de entrada de agua turbina	Tubería PVC	350,00	350,00
			TO	ΓAL (S/.)	2275,00

Tabla 7 Costos de Componentes - Compra Indirecta (Fabricación/Ensamble)

Fuente: Elaboración Propia

5.4. COSTO TOTAL

COSTOS GEI	NERALES DIRI	ECTOS E IND	IRECTOS
	Costos	Costos	
	Componentes	Fabricación	Total (s/.)
		Ensamble	
COSTOS DIRECTOS	11107.10		11107.10
COSTOS INDIRECTOS		2275.00	2275.00
COSTO TOTAL DE	OLICAT	6	13,382.10
PRODUCCIÓN	Res .		

Tabla 8 Costo total de módulo de Turbina Francis

Fuente: Elaboración Propia

77

Publicación autorizada con fines académicos e investigativos En su investigación no olvide referenciar esta tesis

CONCLUSIONES

- 1.El diseño e implementación del módulo de turbina Francis es ideal para una altura neta de 8m, potencia al eje de 12 Watts, a una velocidad de rotación de 1100 RPM, que mediante las pruebas en el laboratorio se pudo validar.
- 2.Se realizó una metodología para diseñar y caracterizar el módulo de turbina Francis, a partir de la información teórico-experimental. El empleo de esta metodología permitió obtener las velocidades óptimas de rotación mediante cada una de las pruebas realizada al módulo. La cual varía según el caudal suministrado a la turbina, así como en función de la velocidad específica del rodete, cuyo número de revoluciones por minuto depende de las características del salto.
- **3.**En el proceso de evaluación y pruebas del módulo de turbina Francis se demostraron los caudales ideales de trabajo (20 a 50 LPM) y se obtuvieron un rango de eficiencias de:
 - 48% con un caudal de 10 LPM.
 - 41% con un caudal de 20 LPM.
- **4.**Se verifico la eficiencia, y estas nos indican que a medida que se aumenta la carga, disminuyen las velocidades de rotación (RPM), pero aumentan las potencias, de esta manera hasta llegar a una eficiencia máxima y luego decrecer.
- **5.**Según las pruebas realizadas en el módulo de turbina Francis, esta tiene una eficiencia aproximada del 48%, dicha eficiencia es poco comparable con las altas eficiencias que logra dicha turbina cotejando valores con textos de referencia que sugieren un valor de hasta el 90% para turbinas Francis, esto se debe en gran medida a las perdidas en microgeneración, estas son más relevantes debido a que la potencia generada es menor. Por lo cual la eficiencia para turbinas de microgeneración es menor que la macrogeneración, que por lo general opera en el rango entre 60% y 90%.
- **6.**El costo de fabricación del módulo de enseñanza de turbina Francis es S/. 13,382.10, donde se incluye costos del diseño, fabricación e implementación y componentes de compra directa.

RECOMENDACIONES

- **1.**Antes de realizar las pruebas en el módulo de turbina Francis, es indispensable revisar el procedimiento de trabajo que nos brinda las guías de prácticas y las instrucciones de uso.
- 2.El salto proporcionado por la bomba es mucho mayor al requerimiento del módulo de turbina Francis, por lo cual, para evitar daños o roturas por sobrepresión en la tubería, rotámetro y sobre todo en la turbina se recomienda cerrar la válvula de compuerta que va hacia la turbina y abrir la válvula que se dirige al tanque antes de encender la bomba hidráulica.
- **3.**Verificar que todos los equipos de medición se encuentren en condiciones óptimas para tener la certeza de que los datos que se nos brindan sean los correctos.
- **4.**Para evitar daños en el equipo a futuro, después de utilizar el módulo drenar inmediatamente el fluido del tanque, bomba centrifuga y turbina por medio de las válvulas correspondientes para que no se adhiera residuos de óxido en las paredes de la turbina.
- **5.**Para realizar pruebas en el módulo, mínimo deberán ser ejecutadas por 2 personas y bajo supervisión de un encargado del laboratorio.

BIBLIOGRAFÍA

- Ahmed Laouari & Adel Ghenaiet. (2016). Simulations of steady cavitating Flow in a small Francis Turbine. *International Journal of Electrical of rotating Machinery*. Article ID 4851454.
- 2.Betancourt Jurado, M. (2007). *Diseño de un módulo interactivo de generación hidráulica de energía eléctrica*. Universidad tecnologica de Pereira.
- 3.Energy Procedia. (2016). A numerical case: bovet approach to deign a Francis Turbine runner. *International conference on Sustainability in energy and builidings*. SEB-16, 11-13, ITALIA.
- 4.Eisenring, M. (1991). *Micro Pelton Turbines* (Vol. Volume 9). St. Gallen, Switzerland: MHPG Series Harnessing Water Power on a Small Scale.
- 5.Fernández Díez, P. (1996). *Turbinas hidráulicas*. España: Departamento de Ingeniería Electrica y Energética. Universidade de Cantabria, España.
- 6.Guillén García, J. (2002). Energías renovables. Universidad Verdad, Nº 29.
- 7.Gil Bancallan, Luis. (2017). Diseño de un modulo de simulacion de generacion hidroelectrico utilizando turbinas Pelton y Francis Abastecidas Por un sistema de recirculacion. Universidad Catolica Santo Toribio de Mogrovejo, Facultad de ingeniería, Escuela de Ingenieria Mecanica Electrica, Chiclayo - Perú.
- 8.Gómez Gómez, J. Palacio Higuita, E., & Paredes Gutiérrez, C. (2008). La turbina Mochell-Banki y su presencia en Colombia. *Avances en Recursos Hidráulicos*. SEDIC S.A. Medellín.
- 9.Hauser Vavra, K. (2011). *Caracterización de turbina hidráulica tipo Turgo*. Universidad de Chile.
- 10.Hermosin Aumente, A. (2016). *Diseño y estudio de viabilidad de una central hidroeléctrica reversible en la Isla de La Gomera.*
- 11.Lostaunau, L. M. (2005). Uso De Las Turbinas Hidráulicas En Ríos De Pendientes Bajas.UNSM, Electrónica.
- 12.Mataix, C. (1986). *Mecánica de fluidos y maquinas hidráulicas*. Madrid, España: Ediciones del Castillo S.A.
- 13.Maria Paulina martinez Esobar. (2007). Pruebas de comportamiento en las turbinas Francis.Universidad EAFIT, Departamento de Ingeniería Mecánica, Area de diseño, Medellin
- 14.Porras Ortiz, R. & Mayorga Pardo, Alex (2011). Estudio en el banco de pruebas "tutor" para determinar la potencia y eficiencia de las turbinas Pelton y Francis en la facultad de Ingeniería Civil y Mecánica. Universidad Técnica de Ambato.

- 15.Uchuary, Á. D. (2013). *Rehabilitación de un banco de pruebas para estudio de bombas centrífugas y adecuación del banco para el estudio de turbinas tipo turgo*. Universidad Técnica Particular de Loja.
- 16.Yulin wu, Jintao liu, yuekun sun, shuhong Liu, Zhigang zuo. (2013). Numerical analysis of flow in Francis turbine on a equal critical cavitation coefficient line. *Journal of mechanical Science and technology*. Santiago de Chile.
- 17.Viedma Robles, A., & Zamora Parra, B. (1997). Teoría de Máquinas Hidráulicas. España: Servicio de publicaciones Universidad de Murcia.
- Zoppetti, Gaudencio J. (1979). Centrales Hidroeléctricas. Editorial Gustavo Gili S.L. Mexico DF.

Publicación autorizada con fines académicos e investigativos En su investigación no olvide referenciar esta tesis

ANEXO A Datos Obtenidos

82

Publicación autorizada con fines académicos e investigativos En su investigación no olvide referenciar esta tesis

A.1 Datos Obtenidos

de toma de datos	Altura	Velocidad	Presión Manométrica	Presión Manométrica	Presión Manométrica	Caudal		Freno		Par Mecánico	Velocidad Angular	Potencia Hidráulica	Potencia Mecánica	Eficiencia
²	н	N	Pman1	Pman2	AP (BAR)	Q	F1	F2	F1-F2	т	ω	Ph	Р	η
	[m]	RPM	[Bar]	[Bar]	[Bar]	ГРМ	[N]	[N]	[N]	[N.cm]	[rad/s]	[w]	[w]	%
1	1.02	670	0.1	0	0.1	10	0	0	0	0	70.16	1.67	0.00	0.00%
2	1.02	570	0.1	0	0.1	10	0.2	0	0.2	1	59.69	1.67	0.60	35.81%
3	1.02	510	0.1	0	0.1	10	0.3	0	0.3	1.5	53.41	1.67	0.80	48.07%
4	1.02	312	0.1	0	0.1	10	0.4	0.1	0.3	1.5	32.67	1.67	0.49	29.40%
5	0.51	120	0.05	0	0.05	10	0.6	0.1	0.5	2.5	12.57	0.83	0.31	37.70%
6	0.51	60	0.05	0	0.05	10	0.7	0.1	0.6	3	6.28	0.83	0.19	22.62%
7	0.50	0	0.05	0	0.05	10	0.8	0.2	0.6	3	0.00	0.83	0.00	0.00%
l° de toma de datos	Altura	Velocidad	Presión Manométrica	Presión Manométrica	Presión Manométrica	Caudal		Freno		Par Mecánico	Velocidad Angular	Potencia Hidráulica	Potencia Me cánica	Eficiencia
N° de toma de datos	т Altura	Z Velocidad	Presión Manométrica bresión Manométrica	Presión Manométrica bresión Manométrica	Presión Manométrica V ABAB	D Caudal	F1	Freno F2	F1-F2] - Par Mecánico	E Velocidad Angular	공 Potencia Hidráulica	ъ Рotencia Mecánica	ы Eficiencia
N° de toma de datos	[m]	RPM Z Velocidad	[Bar] Presión Manométrica	[Bar] Presión Manométrica	[Bar] A Presión Manométrica	LPM D Caudal	F1	Freno F2 [N]	F1-F2 [N]	[N.cm] H Par Mecánico	[rad/s] E Velocidad Angular	동 Potencia Hidráulica	کا A Potencia Mecánica	۲ Eficiencia ۴
T N° de toma de datos	н [m] 0.72	Velocidad Velocidad	Presión Manométrica Barl 0.069	0 [Bar] Presión Manométrica	Bar] Presión Manométrica (Bar] Presión Manométrica	Caudal D C D M D D D D D D D	F1 [N] 0	Freno F2 [N] 0	F1-F2 [N]	O [N.cm] I Par Mecánico	83.89 [rad/s] E Velocidad Angular	Potencia Hidráulica	Potencia Mecánica [w]	Eticiencia %00.00
N° de toma de datos	н [m] 0.72 0.71	N Mag 610 525	Presión Manométrica Barl 0.069 0.078	0 [Bar] Presión Manométrica	AP (BAR) [Bar] 0.069 0.078	ерения Санада 10 10	F1 [N] 0 0.2	Freno F2 [N] 0 0	F1-F2 [N] 0 0.2	T 0 [N.cm] 1	Control Control <t< td=""><td>Potencia Hidráulica</td><td>Potencia Mecánica [w] 0.00 0.55</td><td>r Ei Gio Gio Gio Gio Gio Gio Gio Gio Gio Gi</td></t<>	Potencia Hidráulica	Potencia Mecánica [w] 0.00 0.55	r Ei Gio Gio Gio Gio Gio Gio Gio Gio Gio Gi
N° de toma de datos	н [m] 0.72 0.71 0.69	N 610 525 412	Pman1 [leg] 0.069 0.078 0.086	0 0 [Bar] Presión Manométrica	AP (BAR) [Bar] 0.069 0.078 0.086	Canddal Canddal D D D D D D D D D D D D D D D D D D D	F1 [N] 0 0.2 0.3	Freno F2 [N] 0 0 0	F1-F2 [N] 0 0.2 0.3	D IN.cm] T D T 1 T 1	Celocidad Angular Velocidad Angular (s) (s) (s) (s) (s) (s) (s) (s) (s) (s)	Potencia Hidráulica [w] 1.15 1.3 1.43	P [w] 0.00 0.55 0.65	rege rege rege rege rege rege rege rege
N° de toma de datos	н [m] 0.72 0.71 0.69 0.22	<mark>الالا</mark> الالالالالالالالالالالالالالالالا	Pman1 [reg] 0.069 0.078 0.086 0.056	0 0 0 0	AP (BAR) [Egg] 0.069 0.078 0.086 0.056	ि हुन्न हुन हुन्न हुन हुन हुन हुन हुन हुन हुन हुन हुन हु	F1 [N] 0 0.2 0.3 0.4	Freno F2 [N] 0 0 0 0 0 0 0.1	F1-F2 [N] 0 0.2 0.3	Dar Mecánico 1 2 1.5	Aelocidad Angular Velocidad Angular (2) (2) (2) (2) (2) (2) (2) (2) (2) (2)	Potencia Hidráulica [w] 1.43 1.43 0.93	P (w] (w] (w] 0.00 0.55 0.65 0.29	r r r r r r r r r r r r r r r r r r r
N° de toma de datos	н [m] 0.72 0.71 0.69 0.22 0.61	N N M M M M M M M M M M	Pman1 [reg] 0.069 0.078 0.086 0.056	0 0 0 0	AP (BAR) 0.069 0.068 0.0656 0.0656	ि	F1 [N] 0 0.2 0.3 0.4 0.6	Freno F2 [N] 0 0 0 0 0 0.1 0.1	F1-F2 [N] 0 0.2 0.3 0.5	Dar Mecánico 1 2.5	 A celocidad Angular Caldisi <licaldisi< li=""> <licaldisi< td=""><td>Ph Dotencia Hidráulica [w] 1.15 1.43 0.93 1.43 1.43</td><td>P (w] (w] (w] 0.00 0.55 0.65 0.29 0.21</td><td>representation of the second s</td></licaldisi<></licaldisi<>	Ph Dotencia Hidráulica [w] 1.15 1.43 0.93 1.43 1.43	P (w] (w] (w] 0.00 0.55 0.65 0.29 0.21	representation of the second s

° de toma de datos	Altura	Velocidad	Presión Manométrica	Presión Manométrica	Presión Manométrica	Caudal		Freno		Par Mecánico	Velocidad Angular	Potencia Hidráulica	Potencia Mecánica	Eficiencia
ž	н	N	Pman1	Pman2	AP (BAR)	Q	F1	F2	F1-F2	т	ω	Ph	Р	η
	[m]	RPM	[Bar]	[Bar]	[Bar]	MdJ	[N]	[N]	[N]	[N.cm]	[rad/s]	[w]	[w]	%
1	0.51	550	0.05	0	0.05	10	0	0	0	0	57.60	0.83	0.00	0.00%
2	0.51	480	0.05	0	0.05	10	0.1	0	0.1	0.5	50.27	0.83	0.25	30.16%
3	0.51	315	0.05	0	0.05	10	0.2	0	0.2	1	32.99	0.83	0.33	39.58%
4	0.51	60	0.05	0	0.05	10	0.4	0.1	0.3	1.5	6.28	0.83	0.09	11.31%
5	0.51	40	0.05	0	0.05	10	0.5	0.1	0.4	2	4.19	0.83	0.08	10.05%
6	0.51	0	0.05	0	0.05	10	0.6	0.1	0.5	2.5	0.00	0.83	0.00	0.00%

de toma de datos	Altura	Velocidad	Presión Manométrica	Presión Manométrica	Presión Manométrica	Caudal		Freno		Par Mecánico	Velocidad Angular	Potencia Hidráulica	Potencia Mecánica	Eficiencia
ž	н	N	Pman1	Pman2	AP (BAR)	Q	F1	F2	F1-F2	т	Э	Ph	Р	η
	[m]	RPM	[Bar]	[Bar]	[Bar]	ГРМ	[N]	[N]	[N]	[N.cm]	[rad/s]	[w]	[w]	%
1	1.83	930	0.18	0	0.18	20	0	0	0	0	97.39	6	0.00	0.00%
2	1.63	800	0.16	0	0.16	20	0.2	0.05	0.15	0.75	83.78	5.33	0.63	11.78%
3	1.63	700	0.16	0	0.16	20	0.4	0.1	0.3	1.5	73.30	5.33	1.10	20.62%
4	1.43	600	0.14	0	0.14	20	0.8	0.2	0.6	3	62.83	4.67	1.88	40.39%
5	1.43	500	0.14	0	0.14	20	0.8	0.2	0.6	3	52.36	4.67	1.57	33.66%
6	1.43	400	0.14	0	0.14	20	0.8	0.2	0.6	3	41.89	4.67	1.26	26.93%
7	1.43	300	0.14	0	0.14	20	0.9	0.3	0.6	3	31.42	4.67	0.94	20.20%
8	1.43	200	0.14	0	0.14	20	1.1	0.4	0.7	3.5	20.94	4.67	0.73	15.71%
9	1.43	100	0.14	0	0.14	20	1.3	0.6	0.7	3.5	10.47	4.67	0.37	7.85%
10	1.43	0	0.14	0	0.14	20	2	1	1	5	0.00	4.67	0.00	0.00%

de toma de datos	Altura	Velocidad	Presión Manométrica	Presión Manométrica	Presión Manométrica	Caudal		Freno		Par Mecánico	Velocidad Angular	Potencia Hidráulica	Potencia Mecánica	Eficiencia
²	н	N	Pman1	Pman2	AP (BAR)	Q	F1	F2	F1-F2	т	ω	Ph	Р	η
	[m]	RPM	[Bar]	[Bar]	[Bar]	ГРМ	[N]	[N]	[N]	[N.cm]	[rad/s]	[w]	[w]	%
1	1.73	850	0.17	0	0.17	20	0	0	0	0	89.01	5.67	0.00	0.00%
2	1.73	750	0.17	0	0.17	20	0.2	0.05	0.15	0.75	78.54	5.67	0.59	10.39%
3	1.63	650	0.16	0	0.16	20	0.4	0.1	0.3	1.5	68.07	5.33	1.02	19.14%
4	1.53	550	0.15	0	0.15	20	0.8	0.2	0.6	3	57.60	5	1.73	34.56%
5	1.63	450	0.16	0	0.16	20	0.8	0.2	0.6	3	47.12	5.33	1.41	26.51%
6	1.63	350	0.16	0	0.16	20	0.8	0.2	0.6	3	36.65	5.33	1.10	20.62%
7	1.63	250	0.16	0	0.16	20	0.9	0.3	0.6	3	26.18	5.33	0.79	14.73%
8	1.53	130	0.15	0	0.15	20	1.1	0.4	0.7	3.5	13.61	5	0.48	9.53%
9	1.63	50	0.16	0	0.16	20	1.3	0.6	0.7	3.5	5.24	5.33	0.18	3.44%
10	1.63	0	0.16	0	0.16	20	2	1	1	5	0.00	5.33	0.00	0.00%

de toma de datos	Altura	Velocidad	Presión Manométrica	Presión Manométrica	Presión Manométrica	Caudal		Freno		Par Mecánico	Velocidad Angular	Potencia Hidráulica	Potencia Mecánica	Eficiencia
ž	н	N	Pman1	Pman2	AP (BAR)	q	F1	F2	F1-F2	Т	ω	Ph	Р	η
	[m]	RPM	[Bar]	[Bar]	[Bar]	ГРМ	[N]	[N]	[N]	[N.cm]	[rad/s]	[w]	[w]	%
1	1.63	800	0.16	0	0.16	20	0	0	0	0	83.78	5.33	0.00	0.00%
2	1.63	700	0.16	0	0.16	20	0.2	0.05	0.15	0.75	73.30	5.33	0.55	10.31%
3	1.53	600	0.15	0	0.15	20	0.4	0.1	0.3	1.5	62.83	5	0.94	18.85%
4	1.53	500	0.15	0	0.15	20	0.8	0.2	0.6	3	52.36	5	1.57	31.42%
5	1.53	400	0.15	0	0.15	20	0.8	0.2	0.6	3	41.89	5	1.26	25.13%
6	1.53	300	0.15	0	0.15	20	0.8	0.2	0.6	3	31.42	5	0.94	18.85%
7	1.43	200	0.14	0	0.14	20	0.9	0.3	0.6	3	20.94	4.67	0.63	13.46%
8	1.43	100	0.14	0	0.14	20	1.1	0.4	0.7	3.5	10.47	4.67	0.37	7.85%
9	1.43	50	0.14	0	0.14	20	1.3	0.6	0.7	3.5	5.24	4.67	0.18	3.93%
10	1.43	0	0.14	0	0.14	20	2	1	1	5	0.00	4.67	0.00	0.00%
		in .			2	-			\sim		-	-		

° de toma de datos	Altura	Velocidad	Presión Manométrica	Presión Manométrica	Presión Manométrica	Caudal		Freno		Par Mecánico	Velocidad Angular	Potencia Hidráulica	Potencia Mecánica	Eficiencia
ż	н	N	Pman1	Pman2	AP (BAR)	Q	F1	F2	F1-F2	Т	ω	Ph	Р	η
	[m]	RPM	[Bar]	[Bar]	[Bar]	ГРМ	[N]	[N]	[N]	[N.cm]	[rad/s]	[w]	[w]	%
1	2.55	1560	0.25	0	0.25	35	0	0	0	0	163.36	14.6	0.00	0.00%
2	2.55	1300	0.25	0	0.25	35	0.5	0.2	0.3	1.5	136.14	14.6	2.04	14.00%
3	2.55	1100	0.25	0	0.25	35	0.7	0.2	0.5	2.5	115.19	14.6	2.88	19.75%
4	2.55	950	0.25	0	0.25	35	0.8	0.2	0.6	3	99.48	14.6	2.98	20.46%
5	2.45	800	0.24	0	0.24	35	1	0.2	0.8	4	83.78	14	3.35	23.94%
6	2.24	650	0.22	0	0.22	35	1.3	0.3	1	5	<u>68.</u> 07	12.8	3.40	26.52%
7	2.24	500	0.22	0	0.22	35	1.7	0.5	1.2	6	52.36	12.8	3.14	24.48%
8	2.04	320	0.2	0	0.2	35	2	0.8	1.2	6	33.51	11.7	2.01	17.23%
9	2.04	100	0.2	0	0.2	35	2.6	1.1	1.5	7.5	10.47	11.7	0.79	6.73%
10	1.02	40	0.1	0	0.1	35	2.8	1.2	1.6	8	4.19	5.83	0.34	5.74%
11	1.02	0	0.1	0	0.1	35	2.8	1.2	1.6	8	0.00	5.83	0.00	0.00%
							190							

de toma de datos	Altura	Velocidad	Presión Manométrica	Presión Manométrica	Presión Manométrica	Caudal		Freno		Par Mecánico	Velocidad Angular	Potencia Hidráulica	Potencia Me cánica	Eficiencia
ž	н	N	Pman1	Pman2	AP (BAR)	Q	F1	F2	F1-F2	т	ω	Ph	Р	η
	[m]	RPM	[Bar]	[Bar]	[Bar]	LPM	[N]	[N]	[N]	[N.cm]	[rad/s]	[w]	[w]	%
1	2.45	1400	0.24	0	0.24	35	0	0	0	0	146.61	14	0.00	0.00%
2	2.45	1200	0.24	0	0.24	35	0.5	0.2	0.3	1.5	125.66	14	1.88	13.46%
3	2.45	990	0.24	0	0.24	35	0.7	0.2	0.5	2.5	103.67	14	2.59	18.51%
4	2.34	850	0.23	0	0.23	35	0.8	0.2	0.6	3	89.01	13.4	2.67	19.90%
5	2.04	720	0.2	0	0.2	35	1	0.2	0.8	4	75.40	11.7	3.02	25.85%
6	2.24	630	0.22	0	0.22	35	1.3	0.3	1	5	65.97	12.8	3.30	25.70%
7	2.04	420	0.2	0	0.2	35	1.7	0.5	1.2	6	43.98	11.7	2.64	22.62%
8	2.04	130	0.2	0	0.2	35	2	0.8	1.2	6	13.61	11.7	0.82	7.00%
9	1.02	60	0.1	0	0.1	35	2.6	1.1	1.5	7.5	6.28	5.83	0.47	8.08%
10	1.02	0	0.1	0	0.1	35	2.8	1.2	1.6	8	0.00	5.83	0.00	0.00%

de toma de datos	Altura	Velocidad	Presión Manométrica	Presión Manométrica	Presión Manométrica	Caudal		Freno		Par Mecánico	Velocidad Angular	Potencia Hidráulica	Potencia Mecánica	Eficiencia
ž	Н	N	Pman1	Pman2	AP (BAR)	Q	F1	F2	F1-F2	т	ω	Ph	Р	η
	[m]	RPM	[Bar]	[Bar]	[Bar]	ГРМ	[N]	[N]	[N]	[N.cm]	[rad/s]	[w]	[w]	%
1	2.45	1300	0.24	0	0.24	35	0	0	0	0	136.14	14	0.00	0.00%
2	2.45	1100	0.24	0	0.24	35	0.5	0.2	0.3	1.5	115.19	14	1.73	12.34%
3	2.45	950	0.24	0	0.24	35	0.7	0.2	0.5	2.5	99.48	14	2.49	17.76%
4	2.34	800	0.23	0	0.23	35	0.8	0.2	0.6	3	83.78	13.4	2.51	18.73%
5	2.04	650	0.2	0	0.2	35	1	0.2	0.8	4	68.07	11.7	2.72	23.34%
6	2.04	500	0.2	0	0.2	35	1.3	0.3	1	5	52.36	11.7	2.62	22.44%
7	2.04	320	0.2	0	0.2	35	1.7	0.5	1.2	6	33.51	11.7	2.01	17.23%
8	2.04	100	0.2	0	0.2	35	2	0.8	1.2	6	10.47	11.7	0.63	5.39%
9	1.02	40	0.1	0	0.1	35	2.6	1.1	1.5	7.5	4.19	5.83	0.31	5.39%
10	1.02	0	0.1	0	0.1	35	2.8	1.2	1.6	8	0.00	5.83	0.00	0.00%

de toma de datos	Altura	Velocidad	Presión Manométrica	Presión Manométrica	Presión Manométrica	Caudal		Freno		Par Mecánico	Velocidad Angular	Potencia Hidráulica	Potencia Mecánica	Eficiencia
ž	н	N	Pman1	Pman2	AP (BAR)	Q	F1	F2	F1-F2	т	ω	Ph	Р	η
	[m]	RPM	[Bar]	[Bar]	[Bar]	ГРМ	[N]	[N]	[N]	[N.cm]	[rad/s]	[w]	[w]	%
1	3.57	1920	0.35	0	0.35	50	0	0	0	0	201.06	29.2	0.00	0.00%
2	3.57	1300	0.35	0	0.35	50	0.8	0.2	0.6	3	136.14	29.2	4.08	14.00%
3	3.06	760	0.3	0	0.3	50	1.2	0.4	0.8	4	79.59	25	3.18	12.73%
4	3.06	520	0.3	0	0.3	50	1.8	0.4	1.4	7	54.45	25	3.81	15.25%
5	2.75	260	0.27	0	0.27	50	2	0.6	1.4	7	27.23	22.5	1.91	8.47%
6	2.75	130	0.27	0	0.27	50	2.4	0.8	1.6	8	13.61	22.5	1.09	4.84%
7	2.75	84	0.27	0	0.27	50	2.6	1	1.6	8	8.80	22.5	0.70	3.13%
8	2.75	56	0.27	0	0.27	50	2.8	1.2	1.6	8	5.86	22.5	0.47	2.09%
9	2.75	35	0.27	0	0.27	50	3	1.2	1.8	9	3.67	22.5	0.33	1.47%
10	2.75	22	0.27	0	0.27	50	3.2	1.4	1.8	9	2.30	22.5	0.21	0.92%
11	2.75	12	0.27	0	0.27	50	3.4	1.4	2	10	1.26	22.5	0.13	0.56%
12	2.75	0	0.27		0.27	50	3.6	1.8	1.8	9	0.00	22.5	0.00	0.00%

de toma de datos	Altura	Velocidad	Presión Manométrica	Presión Manométrica	Presión Manométrica	Caudal		Freno		Par Mecánico	Velocidad Angular	Potencia Hidráulica	Potencia Mecánica	Eficiencia
ž	н	N	Pman1	Pman2	AP (BAR)	Q	F1	F2	F1-F2	т	ω	Ph	Р	η
	[m]	RPM	[Bar]	[Bar]	[Bar]	ГРМ	[N]	[N]	[N]	[N.cm]	[rad/s]	[w]	[w]	%
1	3.57	1555	0.35	0	0.35	50	0	0	0	0	162.84	29.2	0.00	0.00%
2	3.06	920	0.3	0	0.3	50	0.8	0.2	0.6	3	96.34	25	2.89	11.56%
3	3.06	730	0.3	0	0.3	50	1.2	0.4	0.8	4	76.45	25	3.06	12.23%
4	3.57	550	0.35	0	0.35	50	1.8	0.4	1.4	7	57.60	29.2	4.03	13.82%
5	3.06	260	0.3	0	0.3	50	2	0.6	1.4	7	27.23	25	1.91	7.62%
6	3.06	130	0.3	0	0.3	50	2.4	0.8	1.6	8	13.61	25	1.09	4.36%
7	3.06	80	0.3	0	0.3	50	2.6	1	1.6	8	8.38	25	0.67	2.68%
8	3.06	56	0.3	0	0.3	50	2.8	1.2	1.6	8	5.86	25	0.47	1.88%
9	3.06	32	0.3	0	0.3	50	3	1.2	1.8	9	3.35	25	0.30	1.21%
10	3.06	22	0.3	0	0.3	50	3.2	1.4	1.8	9	2.30	25	0.21	0.83%
11	3.06	0	0.3	0	0.3	50	3.4	1.4	2	10	0.00	25	0.00	0.00%

de toma de datos	Altura	Velocidad	Presión Manométrica	Presión Manométrica	Presión Manométrica	Caudal		Freno		Par Mecánico	Velocidad Angular	Potencia Hidráulica	Potencia Mecánica	Eficiencia
ž	н	N	Pman1	Pman2	AP (BAR)	Q	F1	F2	F1-F2	т	ω	Ph	Р	η
	[m]	RPM	[Bar]	[Bar]	[Bar]	МЧ	[N]	[N]	[N]	[N.cm]	[rad/s]	[w]	[w]	%
1	3.57	1300	0.35	0	0.35	50	0	0	0	0	136.14	29.2	0.00	0.00%
2	3.06	760	0.3	0	0.3	50	0.8	0.2	0.6	3	79.59	25	2.39	9.55%
3	3.06	520	0.3	0	0.3	50	1.2	0.4	0.8	4	54.45	25	2.18	8.71%
4	2.75	260	0.27	0	0.27	50	1.8	0.4	1.4	7	27.23	22.5	1.91	8.47%
5	2.75	130	0.27	0	0.27	50	2	0.6	1.4	7	13.61	22.5	0.95	4.24%
6	2.75	84	0.27	0	0.27	50	2.4	0.8	1.6	8	8.80	22.5	0.70	3.13%
7	2.75	56	0.27	0	0.27	50	2.6	1	1.6	8	5.86	22.5	0.47	2.09%
8	2.75	35	0.27	0	0.27	50	2.8	1.2	1.6	8	3.67	22.5	0.29	1.30%
9	2.75	22	0.27	0	0.27	50	3	1.2	1.8	9	2.30	22.5	0.21	0.92%
10	2.75	12	0.27	0	0.27	50	3.2	1.4	1.8	9	1.26	22.5	0.11	0.50%
11	2.75	0	0.27	0	0.27	50	3.4	1.4	2	10	0.00	22.5	0.00	0.00%
								110						

de toma de datos	Altura	Velocidad	Presión Manométrica	Presión Manométrica	Presión Manométrica	Caudal		Freno		Par Mecánico	Velocidad Angular	Potencia Hidráulica	Potencia Mecánica	Eficiencia
ž	н	N	Pman1	Pman2	AP (BAR)	Q	F1	F2	F1-F2	т	ω	Ph	Р	η
	[m]	RPM	[Bar]	[Bar]	[Bar]	ГРМ	[N]	[N]	[N]	[N.cm]	[rad/s]	[w]	[w]	%
1	3.57	1830	0.35	0	0.45	60	0	0	0	0	191.64	45	0.00	0.00%
2	3.57	1540	0.35	0	0.35	60	0.4	0.2	0.2	1	161.27	35	1.61	4.61%
3	3.16	1171	0.31	0	0.31	60	0.8	0.2	0.6	3	122.63	31	3.68	11.87%
4	3.06	847	0.3	0	0.3	60	1.2	0.2	1	5	88.70	30	4.43	14.78%
5	2.85	615	0.28	0	0.28	60	1.6	0.4	1.2	6	64.40	28	3.86	13.80%
6	2.65	415	0.26	0	0.26	60	2	0.6	1.4	7	43.46	26	3.04	11.70%
7	2.55	140	0.25	0	0.25	60	2.2	0.8	1.4	7	14.66	25	1.03	4.10%
8	1.43	90	0.14	0	0.14	60	2.2	0.8	1.4	7	9.42	14	0.66	4.71%
9	1.02	25	0.1	0	0.1	60	2.3	0.8	1.5	7.5	2.62	10	0.20	1.96%
10	0.00	0	0	0	0.1	60	2.4	0.9	1.5	7.5	0.00	10	0.00	0.00%

Publicación autorizada con fines académicos e investigativos En su investigación no olvide referenciar esta tesis

2.55

1.43

1.02

0.00

90

25

15

0

7

8

9

10

0.25

0.14

0.1

0

0

0

0

0

0.25

0.14

0.1

0.1

60

60

60

60

2.2

2.2

2.3

2.4

' de toma de datos	Altura	Velocidad	Presión Manométrica	Presión Manométrica	Presión Manométrica	Caudal		Freno		Par Mecánico	Velocidad Angular	Potencia Hidráulica	Potencia Mecánica	Eficiencia
ž	н	N	Pman1	Pman2	AP (BAR)	Q	F1	F2	F1-F2	т	ω	Ph	Р	η
	[m]	RPM	[Bar]	[Bar]	[Bar]	LPM	[N]	[N]	[N]	[N.cm]	[rad/s]	[w]	[w]	%
1	3.57	1650	0.35	0	0.35	60	0	0	0	0	172.79	35	0.00	0.00%
2	3.57	1250	0.35	0	0.35	60	0.4	0.2	0.2	1	130.90	35	1.31	3.74%
3	3.16	1110	0.31	0	0.31	60	0.8	0.2	0.6	3	116.24	31	3.49	11.25%
4	3.47	830	0.34	0	0.34	60	1.2	0.2	1	5	86.92	34	4.35	12.78%
5	2.85	622	0.28	0	0.28	60	1.6	0.4	1.2	6	65.14	28	3.91	13.96%
6	2.65	240	0.26	0	0.26	60	2	0.6	1.4	7	25.13	26	1.76	6.77%
7	2.55	110	0.25	0	0.25	60	2.2	0.8	1.4	7	11.52	25	0.81	3.23%
8	1.43	38	0.14	0	0.14	60	2.2	0.8	1.4	7	3.98	14	0.28	1.99%
9	1.02	35	0.1	0	0.1	60	2.3	0.8	1.5	7.5	3.67	10	0.27	2.75%
10	0.00	0	0	0	0.1	60	2.4	0.9	1.5	7.5	0.00	10	0.00	0.00%
					45	1								
° de toma de datos	Altura	Velocidad	Presión Manométrica	Presión Manométrica	Presión Manométrica	Caudal		Freno		Par Mecánico	Velocidad Angular	Potencia Hidráulica	Potencia Mecánica	Eficiencia
ž	н	N	Pman1	Pman2	AP (BAR)	Q	F1	F2	F1-F2	т	ω	Ph	Р	η
	[m]	MAA	[Bar]	[Bar]	[Bar]	ГРМ	[N]	[N]	[N]	[N.cm]	[rad/s]	[w]	[w]	%
1	3.57	1540	0.35	0	0.35	60	0	0	0	0	161.27	35	0.00	0.00%
2	3.57	1171	0.35	0	0.35	60	0.4	0.2	0.2	1	122.63	35	1.23	3.50%
3	3.16	847	0.31	0	0.31	60	0.8	0.2	0.6	3	88.70	31	2.66	8.58%
4	3.06	615	0.3	0	0.3	60	1.2	0.2	1	5	64.40	30	3.22	10.73%
5	2.85	415	0.28	0	0.28	60	1.6	0.4	1.2	6	43.46	28	2.61	9.31%
6	2.65	140	0.26	0	0.26	60	2	0.6	1.4	7	14.66	26	1.03	3.95%

0.8

0.8

0.8

0.9

88

1.4

1.4

1.5

1.5

7

7

7.5

7.5

25

14

10

10

9.42

2.62

1.57

0.00

0.66

0.18

0.12

0.00

2.64%

1.31%

1.18%

0.00%

de toma de datos	Altura	Velocidad	Presión Manométrica	Presión Manométrica	Presión Manométrica	Caudal		Freno		Par Mecánico	Velocidad Angular	Potencia Hidráulica	Potencia Mecánica	Eficiencia
ž	н	Ν	Pman1	Pman2	AP (BAR)	Q	F1	F2	F1-F2	т	ω	Ph	Р	η
	[m]	RPM	[Bar]	[Bar]	[Bar]	LPM	[N]	[N]	[N]	[N.cm]	[rad/s]	[w]	[w]	%
1	7.65	2550	0.75	0	0.75	100	0	0	0	0	267.04	125	0.00	0.00%
2	7.14	2220	0.7	0	0.7	100	1	0.4	0.6	3	232.48	117	6.97	5.98%
3	6.63	2000	0.65	0	0.65	100	1.2	0.4	0.8	4	209.44	108	8.38	7.73%
4	6.52	1720	0.64	0	0.64	100	1.6	0.4	1.2	6	180.12	107	10.81	10.13%
5	5.61	1110	0.55	0	0.55	100	2.6	0.5	2.1	10.5	116.24	91.7	12.21	13.31%
6	5.50	980	0.54	0	0.54	100	3	0.6	2.4	12	102.63	90	12.32	13.68%
7	5.50	764	0.54	0	0.54	100	3.2	0.6	2.6	13	80.01	90	10.40	11.56%
8	5.40	/30	0.53	0	0.53	100	3.6	0.8	2.8	14	76.45	88.3	10.70	12.12%
9	5.40	588	0.53	0	0.53	100	3.8	1	2.8	14	61.58	88.3	8.62	9.76%
10	5.40	480	0.53	0	0.53	100	4	1.4	3	15	20.27	00.3	7.54	8.54%
11	5.40	230	0.53	0	0.53	100	4.4	1.4	30	15	29.32	88.3	3.85	4.36%
12	5.40	180	0.53	0	0.53	100	5	1.0	3.2	16	18.85	88.3	3.05	3 41%
14	5.30	120	0.52	0	0.52	100	5.4	1.8	3.6	18	12.57	86.7	2.26	2.61%
15	5.30	50	0.52	0	0.52	100	5.8	2	3.8	19	5.24	86.7	0.99	1.15%
16	5.20	10	0.51	0	0.51	100	6.5	2.4	4.1	20.5	1.05	85	0.21	0.25%
16	5.20	10	0.51	0	0.51	100	6.5	2.4	4.1	20.5	1.05	85	0.21	0.25%
° de toma de datos	5.20 Vitrua	Velocidad	D.51	Presión Manométrica	Presión Manométrica	200 Gandal	6.5	Freno	4.1	Par Mecőnico	Velocidad Angular	Potencia Hidráulica	Dotencia Mecánica Potencia	0.25% Eticiencia
N° de toma de datos	9.20	01 Celocidad	0.51 Lesión Manométrica Dremanna	0 Dresión Manométrica	0.51 Duesion Manométrica AP (BAR)	Q Q	6.5	Freno	4.1 F1-F2	2.02 Bar Wecánico	1.05 Velocidad Angular	Potencia Hidráulica	D.21 Detenucia Meccanica Detenucia	0.25%
91 N° de toma de datos	5.20 Filteria	RPM velocidad	0.51 Barl Bresión Manométrica	0 [Bar] Presión Manométrica	0.51 Barl AP (BAR) AB (BAR)	DOL Candal D	6.5 F1 [N]	2.4 Freno F2 [N]	4.1 F1-F2 [N]	2.02 Par Mecánico	[rad/s] c Velocidad Angular	[종] Potencia Hidráulica	0.21 Dotenucia Meccunica Potenucia (w]	0.25%
16 N° de toma de datos	5.20 Putrua (m) 7.34	10 Pepool	0.51 estication Presión Manométrica Presión Manométrica Presión Manométrica 0.72	0 [Bar] Presión Manométrica 0 0	0.51 estimation esti	001 Candal D D D D D D D D D D D D D D D D D D D	6.5 F1 [N] 0	2.4 Freno F2 [N] 0	4.1 F1-F2 [N] O	Dar Mecánico Par Mecánico	1.05 velocidad Angular velocidad Angular 246.09	B5 Botencia Hidráulica [W] 120	0.21 	0.25%
16 N° de toma de datos	5.20 впременяние н [m] 7.34 6.63	10 Peppioon N 2350 2200	0.51	0 [Bar] Presión Manométrica 0 0 0	0.51	001 و م سوع م سوع م سوع م سوع م سوع م سوع م سوم م	6.5 F1 [N] 0 1	2.4 Freno F2 [N] 0 0.4	4.1 F1-F2 [N] 0 0.6	Dar Mecánico [N.cm] D 0 3	246.09 230.38	85 botencia Hidráulica [w] 120 108	0.21 	0.25%
16 N° de toma de datos	5.20 Part of Control Control	10 Peppool voi voi voi voi voi voi voi voi voi voi	0.51	0 Barl Presión Manométrica 0 0 0 0 0 0 0	0.51	100 Q Q Q D D D D D D D D	6.5 F1 [N] 0 1 1.2	2.4 Freno [N] 0 0.4 0.4	4.1 F1-F2 [N] 0 0.6 0.8	Dar Mecánico [N.cm] D 3 4	246.09 230.38 191.64	85 Ph [w] 120 108 107	0.21 	0.25%
16 V de toma de datos 1 2 3 4	5.20 Part 1 Part 1	10 Pepgio ogy N 2350 2200 1830 1225	0.51 	0 Barl Barl Barl Barl Barl Barl Barl Barl	0.51	100 Q Q 100 100 100 100	6.5 F1 [N] 0 1 1.2 1.6	2.4 Freno [N] 0 0.4 0.4 0.4	4.1 F1-F2 [N] 0 0.6 0.8 1.2	2.05 Bar Wecźwico [Vrcm] T 0 0 2 0 0 0 2 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0	246.09 230.38 191.64 128.28	85 Ph [w] 120 108 107 91.7	0.21 	0.25%
16 N° de toma de datos 1 2 3 4 5	5.20 Purply H [m] 7.34 6.63 6.52 5.61 5.81	10 Peppool N 2350 2200 1830 1225 1111	0.51	0 Presión Manométrica [Bar] 0 0 0 0 0 0 0 0	0.51	100 Representations R	6.5 F1 [N] 0 1 1.2 1.6 2.6	Freno F2 [N] 0 0.4 0.4 0.4	4.1 F1-F2 [N] 0 0.6 0.8 1.2 2.1	20.5 Par Wecźwico T Sar Wecźwico 0 3 4 6 10.5	246.09 230.38 191.64 128.28 116.34	85 Ph [w] 120 108 107 91.7 95	0.21 Single Single Sin	0.25%
16 x , de toma de datos 1 2 3 4 5 6	5.20 Provide Provide Provide Provide Provide Provide Provide Provide Provide Provide Provide Provide Provide Provide Provide Provide Provide Provide Provide Provide Provide Provide Provide Provide Provide Provide Provide Provide Provide Provide Provide Provide Provide Provide Provide Provide Provide Provide Provide Provide Provide Provide Provide Provide Provide Provide Provide Provide Provide Provide Provide Provide Provide Provide Provide Provide Provide Provide Provide Provide Provide Provide Provide Provide Provide Provide Provide Provide Provide Provide Provide Provide Provide Provide Provide Provide Provide Provide Provide Provide Provide Provide Provide Provide Provide Provide Provide Provide Provide Provide Provide Provide Provide Provide Provide Provide Provide Provide Provide Provide Provide Provide Provide Provide Provide Provide Provide Provide Provide Provide Provide Provide Provide Provide Provide Provide Provide Provide Provide Provide Provide Provide Provide Provide Provide Provide Provide Provide Provide Provide Provide Provide Provide Provide Provide Provide Provide Provide Provide Provide Provide Provide Provide Provide Provide Provide Provide Provide Provide Provide Provide Provide Provide Provide Provide Provide Provide Provide Provide Provide Provide Provide Provide Provide Provide Provide Provide Provide Provide Provide Provide Provide Provide Provide Provide Provide Provide Provide Provide Provide Provide Provide Provide Provide Provide Prov	10 Peppioon N 2350 2200 1830 1225 1111 912	0.51 s: ;;;; u u u u u u u u u u u u u u u u u	0 Presión Manométrica 0 0 0 0 0 0 0 0 0	0.51	100	6.5 F1 [N] 0 1 1.2 1.6 2.6 3 	Freno F2 [N] 0 0.4 0.4 0.5 0.6	4.1 F1-F2 [N] 0 0.6 0.8 1.2 2.1 2.4	20.5 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	1.05 J J J J J J J J	85 Ph [w] 120 108 107 91.7 95 90 90	0.21 	0.25%
16 x , de toma de datos 1 2 3 4 5 6 7 7	5.20 н [m] 7.34 6.63 6.52 5.61 5.81 5.50 5.50 5.40	10 PPP PPP PPP PPP PPP PPP PPP P	0.51 s s s s s s s s s s s s s	0 Pman2 [Bar] 0 0 0 0 0 0 0 0 0 0 0 0 0	0.51	100	6.5 F1 [N] 0 1 1.2 1.6 2.6 3 3.2 3.2	Freno F2 [N] 0 0.4 0.4 0.4 0.5 0.6	4.1 F1-F2 [N] 0 0.6 0.8 1.2 2.1 2.4 2.6	20.5 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	1.05 1.05 1.05 246.09 230.38 191.64 128.28 116.34 95.50 85.20	85 Ph [w] 120 108 107 91.7 95 90 88.3 82.3	0.21 site view	0.25%
16 16 10 10 10 10 10 10 10 10 10 10	5.20 Final State	10 PBP PD PD PD PD PD PD PD PD PD P	0.51 spint spi	0 Pman2 [Bar] 0 0 0 0 0 0 0 0 0 0 0 0 0	0.51 s: y: y: o: o: o: o: o: o: o: o: o: o	100	6.5 F1 [N] 0 1.2 1.6 2.6 3 3.2 3.2 3.6 5.7	Freno F2 [N] 0 0.4 0.4 0.4 0.4 0.4 0.5 0.6 0.6 0.8	4.1 F1-F2 [N] 0 0.6 0.8 1.2 2.1 2.4 2.6 2.8 2.8	20.5 20.5 S Part Mecginics T T T E S N C N N N N N N N N N N N N N	1.05 1.05 246.09 230.38 191.64 128.28 116.34 95.50 85.24 6.52	85 Ph [w] 120 108 107 91.7 95 90 88.3 88.3 88.3	0.21 	0.25%
16 16 1 1 2 3 4 5 5 6 7 7 8 9 9	5.20 F F F F F F F F	10 PBP PDP PDP PDP PDP PDP PDP PDP	0.51 rst rst rst rst rst rst rst rst	0 Pman2 [Bar] 0 0 0 0 0 0 0 0 0 0 0 0 0	0.51	100	6.5 F1 [N] 0 1 1.2 1.6 2.6 3 3.2 3.6 3.2 3.6 3.2	Freno F2 [N] 0 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.5 0.6 0.8 1	4.1 F1-F2 [N] 0 0.6 0.8 1.2 2.1 2.4 2.6 2.8 2.8 2.8	20.5 S S S S S S S S S S S S S	1.05 1	85 Ph [w] 120 108 107 91.7 91.7 95 90 88.3 88.3 88.3 88.3	0.21 site view	0.25%
16 1 1 1 1 1 1 1 1	5.20 P P P P P P P P	10 PB SO SO SO SO SO SO SO SO SO SO	0.51 symmetry voise Pman1 voise 0.72 0.65 0.64 0.55 0.57 0.54 0.53 0.53 0.53 0.53 0.53	0 Pman2 [Bar] 0 0 0 0 0 0 0 0 0 0 0 0 0	0.51	100	6.5 F1 [N] 0 1 1.2 1.6 2.6 3 3.2 3.6 3.8 4 4 4 4	Freno F2 [N] 0 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.5 0.6 0.8 1 1	4.1 F1-F2 [N] 0 0.6 0.8 1.2 2.1 2.4 2.6 2.8 2.8 3 2.8 3	20.5 S J J J J J J J J J J J J J	246.09 230.38 191.64 128.28 116.34 95.50 85.24 66.18 54.98 32.46	85 Ph [w] 120 108 107 91.7 95 90 88.3 88.3 88.3 88.3 88.3 88.3	0.21 0.21 0.21 0.21 0.21 0.00 0.00 0.91 7.67 7.70 12.22 11.46 11.08 9.27 7.70 4.87 2.64	0.25%
16 16 1 1 1 2 3 4 4 5 6 7 8 9 10 11 12 12	5.20 H [m] 7.34 6.63 6.52 5.61 5.81 5.50 5.40 5.40 5.40 5.40 5.40 5.40 5.40 5.40 5.40	10 PB 2350 2200 1830 1225 1111 912 814 632 525 310 230 60	0.51 Pman1 Pman1 Pman1 D.72 0.65 0.64 0.55 0.57 0.54 0.53 0.53 0.53 0.53 0.53 0.53	0 Presión Manométrica [Bar] 0 0 0 0 0 0 0 0 0 0 0 0 0	0.51 Subsection O.51 O.51 O.51 O.72 O.65 O.64 O.55 O.54 O.53 O.53 O.53 O.53 O.53 O.53 O.53	100 Q Q X 100	6.5 F1 [N] 0 1 1.2 1.6 2.6 3 3.2 3.6 3.8 4 4.4 4.4	Freno F2 [N] 0 0.4 0.4 0.4 0.4 0.4 0.4 1.4 1.4	4.1 F1-F2 [N] 0 0.6 0.8 1.2 2.1 2.4 2.6 2.8 3 3 3 3 2.2	20.5 S S S S S S S S S S S S S	1.05 1	85 Ph [w] 120 108 107 91.7 95 90 88.3 88.3 88.3 88.3 88.3 88.3 88.3 88.3	0.21 0.21 0.21 0.21 0.00 0.91 7.67 7.70 12.22 11.46 11.08 9.27 7.70 4.87 3.61 1.01	0.25%

de toma de datos	Altura	Velocidad	Presión Manométrica	Presión Manométrica	Presión Manométrica	Caudal		Freno		Par Mecánico	Velocidad Angular	Potencia Hidráulica	Potencia Mecánica	Eficiencia
ž	н	N	Pman1	Pman2	AP (BAR)	Q	F1	F2	F1-F2	т	ω	Ph	Р	η
	[m]	КРМ	[Bar]	[Bar]	[Bar]	LPM	[N]	[N]	[N]	[N.cm]	[rad/s]	[w]	[w]	%
1	7.14	2220	0.7	0	0.7	100	0	0	0	0	232.48	117	0.00	0.00%
2	6.63	2000	0.65	0	0.65	100	1	0.4	0.6	3	209.44	108	6.28	5.80%
3	6.52	1720	0.64	0	0.64	100	1.2	0.4	0.8	4	180.12	107	7.20	6.75%
4	5.61	1110	0.55	0	0.55	100	1.6	0.4	1.2	6	116.24	91.7	6.97	7.61%
5	5.50	980	0.54	0	0.54	100	2.6	0.5	2.1	10.5	102.63	90	10.78	11.97%
6	5.50	764	0.54	0	0.54	100	3	0.6	2.4	12	80.01	90	9.60	10.67%
7	5.40	730	0.53	0	0.53	100	3.2	0.6	2.6	13	76.45	88.3	9.94	11.25%
8	5.40	588	0.53	0	0.53	100	3.6	0.8	2.8	14	61.58	88.3	8.62	9.76%
9	5.40	480	0.53	0	0.53	100	3.8	1	2.8	14	50.27	88.3	7.04	7.97%
10	5.40	280	0.53	0	0.53	100	4	1	3	15	29.32	88.3	4.40	4.98%
11	5.40	230	0.53	0	0.53	100	4.4	1.4	3	15	24.09	88.3	3.61	4.09%
12	5.40	60	0.53	>_	0.53	100	4.8	1.6	3.2	16	6.28	88.3	1.01	1.14%

			1		1000 RPM CONSTANTES						2			
de toma de datos	Altura	Velocidad	Presión Manométrica	Presión Manométrica	Presión Manométrica	Caudal		Freno		Par Mecánico	Velocidad Angular	Potencia Hidráulica	Potencia Mecánica	Eficiencia
ž	н	N	Pman1	Pman2	AP (BAR)	Q	F1	F2	F1-F2	т	ω	Ph	Р	η
	[m]	RPM	[Bar]	[Bar]	[Bar]	LPM	[N]	[N]	[N]	[N.cm]	[rad/s]	[w]	[w]	%
1	5.50	980	0.54	0	0.54	20	0.8	0.2	0.6	3	102.63	18	3.08	17.10%
2	5.61	1000	0.55	0	0.55	30	1.2	0.4	0.8	4	104.72	27.5	4.19	15.23%
3	6.12	998	0.6	0	0.6	35	1.3	0.4	0.9	4.5	104.51	35	4.70	13.44%
4	6.63	980	0.65	0	0.65	45	1.6	0.4	1.2	6	102.63	48.8	6.16	12.63%
5	3.06	1000	0.3	0	0.3	15	0.4	0.1	0.3	1.5	104.72	7.5	1.57	20.94%
6	1.53	980	0.15	0	0.15	5	0	0	0	0	102.63	1.25	0.00	0.00%
7	0.50	980	0.3	0	0.3	8	0.2	0.05	0.15	0.75	102.63	4	0.77	19.24%

						600 RPM CONSTANTES								
de toma de datos	Altura	Velocidad	Presión Manométrica	Presión Manométrica	Presión Manométrica	Caudal		Freno		Par Mecánico	Velocidad Angular	Potencia Hidráulica	Potencia Mecánica	Eficiencia
ž	н	N	Pman1	Pman2	AP (BAR)	Q	F1	F2	F1-F2	т	ω	Ph	Р	η
	[m]	RPM	[Bar]	[Bar]	[Bar]	ГРМ	[N]	[N]	[N]	[N.cm]	[rad/s]	[w]	[w]	%
1	1.43	595	0.14	0	0.14	20	0.8	0.2	0.6	3	62.31	4.67	1.87	40.05%
2	1.53	600	0.15	0	0.15	30	1.2	0.4	0.8	4	62.83	7.5	2.51	33.51%
3	2.04	606	0.2	0	0.2	35	1.3	0.4	0.9	4.5	63.46	11.7	2.86	24.48%
4	2.55	600	0.25	0	0.25	45	1.6	0.4	1.2	6	62.83	18.8	3.77	20.11%
5	1.02	600	0.1	0	0.1	15	0.4	0.1	0.3	1.5	62.83	2.5	0.94	37.70%
6	0.51	600	0.05	0	0.05	5	0	0	0	0	62.83	0.42	0.00	0.00%
7	0.50	598	0.1	0	0.1	8	0.2	0.05	0.15	0.75	62.62	1.33	0.47	35.22%

A.2. Graficas

REPOSITORIO DE TESIS UCSM

93

Publicación autorizada con fines académicos e investigativos En su investigación no olvide referenciar esta tesis

94

95

96

97

ANEXO B

Manual De Operación Y Mantenimiento Del Módulo De

Turbina Francis

98

UNIVERSIDAD Católica De Santa María

INSTRUCCIONES DE USO: MODULO TURBINA FRANCIS

Para evitar daños en el equipo por sobrepresión antes de encender el modulo seguir indicaciones:

- 1. Percatarse de que las válvulas de drenaje estén cerradas.
- 2. Cortar el paso TOTALMENTE de la válvula principal que dirige el fluido hacia la turbina.
- 3. Mantener abierta a un 70% la válvula de derivación a tanque para evitar dañar el rotámetro por la sobrepresión.
- 4. Encender la bomba hidráulica mediante el mando de control móvil.
- Abrir al 100% la válvula de derivación y mantener por 1 min la recirculación tanque bomba, Con el fin de purgar el sistema.
- 6. Abrir gradualmente la válvula principal para facilitar el ingreso de fluido hacia la turbina según la necesidad de caudal requerido.
- Regular el flujo de fluido mediante el rotámetro (NO trabajar con caudales superiores a los 110 LPM).
- 8. La presión LIMITE de trabajo de turbina es de 0.7 BAR o 10 PSI.
- 9. NUNCA crear interferencia o contrapresión en la salida tubo de aspiración.

Para evitar daños en el equipo a futuro, después de utilizar el modulo seguir indicaciones:

- Drenar inmediatamente el fluido del tanque por medio de las 2 válvulas para que no se adhiera residuos de óxido en las paredes de la turbina.
- 2. Ladear ligeramente el módulo para que el fluido que se encuentra en la turbina regrese al tanque.
- **3.** Drenar el fluido de la bomba centrifuga para evitar el óxido de los componentes mediante la válvula de drenaje ubicado en la parte inferior del tubo de succión.

UNIVERSIDAD Católica De Santa María

PLAN DE MANTENIMIENTO MODULO: TURBINA FRANCIS

Optimiza el rendimiento del equipo de ensayo y la unidad Servicio de Banco Hidráulico El módulo de turbina Francis ha sido construido para durar. Entregando rendimiento de la manera más eficiente.

Para salvaguardar los altos estándares de operación para los cuales está diseñado este equipo. y para aprovechar al máximo su alta fiabilidad y vida útil, es esencial tener un plan de mantenimiento.

NUMERO DE PARTE	DESCRIPCIÓN DEL EQUIPO	QTY	VERIFY
1	TURBINA FRANCIS	1	
2	BOMBA CENTRIFUGA	1	
3	TANQUE DE AGUA	1	

TURBINA FRANCIS.

El material de los álabes y encauzadoras (polietileno de alta densidad) debe resistir la fatiga, la corrosión y a la erosión, dentro de una espiral de con un panel frontal fabricado en metacrilato transparente para facilitar la visualización y un eje interno en acero inoxidable. **Mantenimiento:** el metacrilato transparente es sensible a generar marcas, rayones y pierde visibilidad como su brillo debiendo así: - Evitar mantener agua dentro de la espiral cuando no se utilice por un tiempo prolongado para evitar la generación de hongos, moho y una opacidad amarillenta.

- Evitar que el agua contenga escoria, oxido para no generar opacidad

- Para su limpieza y mantenimiento cuando la turbina presente opacidad hacer trabajar el sistema con agua con bicarbonato o jabón neutro por unos 10 minutos y luego con solo agua.

BOMBA CENTRIFUGA. Por el tipo de material (hierro fundido) de la bomba esta tiende a generar oxido si es que no hay un correcto drenaje del agua.

- Después de cada uso del módulo drenar inmediatamente el fluido de la bomba centrifuga manualmente, por medio de la válvula de fácil apertura situada debajo del tubo de succión.

- Para tener una máxima eficiencia purgar la bomba mediante una válvula de fácil apertura situado en la parte superior de la bomba centrifuga.

- Evitar que el agua del tanque tenga residuos que puedan interrumpir el paso del agua en el impulsor de bronce ya que esto perjudica sustancialmente la eficiencia de la misma. En el caso de interrupción por residuos sólidos desarmar la tapa del impulsor mediante cuatro pernos y limpiar con un alambre delgado los accesos del impulsor.

TANQUE DE AGUA: No obstante que el tanque del banco hidráulico está revestido con pintura epoxica siempre:

- Se debe limpiar el tanque y evitar el óxido en el deposito ya sea por el tiempo prolongado de agua estancada, esta es muy fácil de drenar mediante las válvulas de fácil apertura en la parte inferior del tanque.

- Para evitar que el agua Produzca oxido en las paredes del tanque y esta pinte la turbina (ya que el metacrilato tiende a absorber la suciedad y toma un color amarillento) después de cada uso del módulo eliminar el agua por medio de las válvulas.

Al seguir las indicaciones aseguraremos un correcto funcionamiento para obtener resultados precisos en las pruebas que se realicen con él. Con características de funcionamiento óptimo en el banco hidráulico y turbina Francis.

ANEXO C

GUÍAS DE PRÁCTICAS DE LABORATORIO DE LA TURBINA FRANCIS

UNIVERSIDAD CATÓLICA DE SANTA MARÍA ESCUELA PROFESIONAL DE INGENIERÍA MECÁNICA MECÁNICA-ELÉCTRICA Y MECATRÓNICA

Guía de Practica: Turbina Hidráulica Francis

Página 103 de

OBTENCIÓN CURVAS CARACTERÍSTICAS DE TURBINA FRANCIS PARA CAUDAL CONSTANTE

1. Objetivos:

El objetivo principal de esta práctica es que el alumno conozca cuál es el comportamiento de una Turbina Francis para generación hidráulica, y que esta le permita conocer cuáles son los cálculos más importantes que se deben realizar dentro de un sistema de este tipo. Para ello, será necesario determinar los siguientes cálculos:

- Obtener las curvas de par mecánico, caudal, potencia mecánica y eficiencia.
- Obtener la velocidad de rotación (RPM) óptima.
- Obtener la potencia generada en W.

2. Información General

Las curvas características han de atribuir el comportamiento de la turbina Francis para todas las posibles condiciones de trabajo, que viene determinada por la variabilidad de salto, carga, la velocidad, etc.

a) Curvas de par mecánico

Son de gran utilidad en el estudio de la regulación y del acoplamiento mecánico de la turbina y el alternador. También son rectas, siendo la ordenada en el origen el par de arranque, y la abscisa de ordenada nula la velocidad de embalamiento. El par de arranque de las turbinas hidráulicas es aproximadamente el doble que el de régimen; esta propiedad es de gran interés, por cuanto permite el arranque en carga cuando el par resistente en el arranque es mayor que el de régimen.

Para el módulo de turbina Francis el par mecánico es medido por el freno de tipo Prony los cuales miden la fuerza de giro de la polea mediante dos balanzas de resorte ubicada en la parte posterior de la turbina (consulte la Figura 1). La fuerza total es la diferencia entre las lecturas de la balanza de lado derecho e Izquierdo. Debido a la dirección de rotación, el balance de la mano derecha dará una lectura más grande que la balanza de la mano izquierda, por lo que para simplificar:


```
F = F1 - F2
```

T = F x R

Donde:

- F: Fuerza total (N)
- F1: Fuerza de balanza lado derecho (N)
- F2: Fuerza de balanza lado izquierdo (N)
- El par es el radio del tambor (polea) multiplicado por la fuerza:

Donde:

- T: Par mecánico (N m)
- R: Radio de la polea (m)

Figura 1: Medición del par mecánico Vista posterior Fuente: Luis. G, Olger. R (2018).

b) Curvas de caudal

La cual varía en función de la velocidad específica del rodete, para las turbinas Francis a medida que se aumenta la carga, disminuyen las velocidades de rotación (RPM), pero

Versión: 01 Página 105 de 9

aumentan las potencias, de esta manera hasta llegar a una eficiencia máxima y luego decrecen. Es posible expresar la curva potencia hidráulica en representación del caudal, siendo también esta recta horizontal debido a la altura de alto constante, la cual está representada con la siguiente ecuación:

```
P_h = \rho g Q H = \gamma Q H
```

Donde:

 P_h : Potencia hidráulica (vatios)

 ρ : Densidad del fluido (para el caso del agua 1000 kg/m3)

g : Aceleración de la gravedad (para este caso se adopta: 9.81 m/s2)

 γ : Peso específico del fluido (para el caso del agua 9810 N/m3)

Q: Caudal proporcionado por el rotámetro (en m3/s, 1 LPM = 1.66667e-5 m3/s),

H: Salto o altura disponible (m)

El salto o altura disponible es medida por el manómetro de glicerina con la siguiente relación:

 $H = \frac{P_{man}}{gp}$

Donde:

 P_{man} : Presión (en Pa, 1 Bar = 100000 Pa)

c) Curvas de potencia mecánica

Parten todas de un origen común y tienen una forma casi parabólica, con un máximo que se corresponde para cada valor de apertura con el rendimiento óptimo. Los puntos de corte con el eje de velocidades se corresponden con las velocidades de embalamiento, distintas para cada valor dependiendo del caudal suministrado, estando en ese momento sometida la turbina, únicamente, al freno impuesto por las resistencias pasivas, tanto

mecánicas como hidráulicas. Para el caso del módulo de turbina Francis la potencia absorbida por la rueda de la turbina, tomada del agua, está dada por la siguiente ecuación:

 $P = \omega T$

Donde:

P: Potencia mecánica (vatios)

T : Par mecánico (N m)

 ω : Velocidad angular (rad/s)

La relación de la velocidad angular está relacionada con la velocidad de rotación medida del tacómetro con la siguiente ecuación:

$$\omega = \frac{2\pi N}{60}$$

Donde:

N: Velocidad de rotación (RPM)

d) Curvas de rendimiento

El rendimiento se obtiene a partir la relación entre la potencia hidráulica y la mecánica según la siguiente relación: El rendimiento es máximo cuando para una velocidad de giro optimo N_0 para una altura constante a la que se realiza el ensayo.

$$\eta = \frac{P}{P_h} x 100$$

 η : Eficiencia (%)

P: Potencia mecánica (vatios)

 P_h : Potencia hidráulica (vatios)

3. Procedimiento de ensayo.

a) Materiales y equipo

Materiales

- Cinta reflectante.
- Agua.

• Fuente de alimentación 220 Volts.

Equipo

- Módulo de turbina Francis.
- Tacómetro.

b) Instalación y Procedimiento

Para la realización de la presente practica de laboratorio se dispondrá del módulo de turbina Francis con los detalles técnicos que se dan a continuación:

Ítem	Detalle					
Tipo de Turbina	Francis					
Caudal máximo de operación	115 LPM					
Numero de alabes móviles	7					
Numero de alabes directores	12					
Presión máxima	1 bar					
Radio de la polea (tambor)	50 mm					
Potencia Nominal de salida	12 watts a 2250 rpm					
Velocidad máxima	2500 rpm					
Máxima altura nominal de salto	8 m					

Tabla 1: Características del módulo de turbina Francis

Fuente: Luis G, Olger R. (2018).

La presión P_{man} representada en el en el manómetro Principal y su valor, nos proporcionara la altura disponible suministrada por la bomba. La potencia mecánica generada por la turbina es absorbida el dinamómetro de Fricción (Freno de tipo Prony), el cual dispone de diferentes posiciones de tensión lo que incrementa la fricción en la rueda de polea. Para determinar la velocidad del rotor se utilizará un tacómetro y la medición del caudal se realiza mediante el rotámetro.

UNIVERSIDAD CATÓLICA DE SANTA MARÍA ESCUELA PROFESIONAL DE INGENIERÍA MECÁNICA MECÁNICA-ELÉCTRICA Y MECATRÓNICA

UNIVERSIDAD

Guía de Practica: Turbina Hidráulica Francis

Página 108 de

9

Figura 2: Principales partes Modulo de turbina Francis vista general Fuente: Luis. G, Olger R. (2018).

Esta turbina está conectada a la bomba para que haya un flujo simulando así una caída de agua y así esta funcione, Se tomara en cuenta el caudal suministrado a la turbina mediante la lectura del rotámetro y altura por medio del manómetro, medimos las revoluciones variando el ángulo de los alabes para que haya mayor o menor flujo de agua y la fuerza ejercida al eje donde se conecta a la turbina Francis. Se tomarán para cada régimen de caudal y altura un total de once medidas, aproximadamente.

El proceso es el siguiente:

- Se regulará el ingreso de caudal proporcionado por la bomba por medio de la válvula de compuerta que está en el ingreso principal (máximo 100LPM).
- Se procederé a variar el ángulo de los alabes para que haya mayor o menor flujo de agua y la fuerza ejercida al eje donde se conecta a la turbina Francis. Midiendo las RPM. (en total 3 aperturas de 25%, 50% y 100% para cada caudal requerido).

repositorio

TESIS UC

Página 109 de

9

Guía de Practica: Turbina Hidráulica Francis

- El par mecánico de la turbina se determina mediante la medición de la fuerza en el freno de tipo Prony. Para medir el número de revoluciones, se ejercerán diversos pares resistentes de giro actuando sobre el dinamómetro, en base al tornillo que permite imprimir una mayor o menor presión sobre la correa que roza con el eje de giro del rodete (once medidas aproximadamente).
- Para cada toma de datos se anotarán las fuerzas ejercidas por el dinamómetro F1 y F2, las revoluciones del rodete *N* (rpm). La presión en el manómetro y el caudal sólo ha de anotarse una vez ya que durante estas medidas el rotámetro mantiene un caudal constante por medio de la regulación de la válvula y la variación de los alabes no modifica estos valores.
- Por último, se procede a variar de nuevo el caudal que a su vez generará en el manómetro la altura del agua que entra en la turbina, y se volverá a tomar los datos Midiendo las RPM ejercida al eje donde se conecta el rodete de la turbina Francis (en total 3 aperturas de 25%, 50% y 100%).

Crea tres tablas con diferente caudal (Q) y aperturas, similar a la Tabla siguiente.

TABLA 1. DATOS DE LABORATORIO: TURBINA FRANCIS													
le toma de datos	Velocdad	Presión Manométrica	Altura	Caudal	Caudal	Freno		Par Mecánico	Velocidad Angular	Potencia Hidraulica	Potencia Mecánica	Eficiencia	
°.N	Ν	Pman	Н	Q	Q	F1	F2	F1-F2	Т	З	Ph	Р	η
	RPM	[Bar]	[m]	LPM	m^3/s	[N]	[N]	[N]	[N.cm]	[rad/s]	[w]	[w]	%
1													
2													
3													
4													
5													
6													
7													
8													
9													
10													
11													

 Tabla 2: Toma de datos de Turbina Hidráulica Francis

 TABLA 1. DATOS DE LABORATORIO: TURBINA FRANCIS

Fuente: Luis G, Olger. R. (2018).

Se analiza y grafica los resultados las curvas similares a la Figura 4 y Figura 5.

Figura 4: Curvas Características para para apertura de 25% y Q=45RPM

Figura 5: Curvas Características para para apertura de 25% Q=100LPM Fuente: Luis G, Olger. R. (2018).

4. Informe y Criterios de Evaluación

El informe se debe realizar de manera escrita al terminar la práctica.

- El informe de la práctica de laboratorio debe llevar:
- Objetivo de la práctica
- Marco Teórico.
- Procedimiento
- Cálculos y resultados.
- Fotografías
- Conclusiones de la práctica.
- Bibliografía.

Se evaluará: Asistencia (obligatoria a practica), Puntualidad, Disposición dentro de la práctica (Actitudinal y Aptitudinal), el informe como tal (redacción, marco teórico, cálculos y conclusiones).

Bibliografía

• Góngora Cruz, L. A., & Rojas Macedo, O. (2018). Diseño e Implementación de un módulo de turbina Francis para el laboratorio de energía de la escuela profesional de Ingeniería Mecánica, Mecánica-Eléctrica Y Mecatrónica. Universidad Católica de Santa María, Arequipa.

OBTENCIÓN CURVAS CARACTERÍSTICAS TURBINA FRANCIS PARA SALTO Y VELOCIDAD DE ROTACIÓN CONSTANTE

1. **Objetivos:**

- Observar y experimentar el funcionamiento real de una turbina hidráulica de reacción (Francis).
- Obtener la curva de rendimiento en el funcionamiento real de una turbina Francis.

2. Información General

La forma habitual de funcionamiento de las turbinas industriales es suministrar, en cada instante, la potencia que la exige el alternador, manteniendo al mismo tiempo constante la frecuencia y, por lo tanto, el número de revoluciones. Este es el motivo de que sea interesante estudiar las variaciones del rendimiento al variar la potencia o el caudal, manteniendo constantes el salto H y la velocidad N (velocidad optima de rotación hallada en la práctica N° 1).

- 3. Procedimiento de ensayo.
- a) Materiales y equipo

Materiales

- Cinta reflectante.
- Agua.
- Fuente de alimentación 220 Volts.

Equipo

- Módulo de turbina Francis.
- Tacómetro.

Instalación y Procedimiento b)

Para la realización de la presente practica de laboratorio se dispondrá del módulo de turbina Francis y previa experiencia de la "Práctica Nº 1: Obtención curva características turbina Francis para caudal constante".

El proceso es el siguiente:

Se regulará la altura proporcionada por la bomba mediante la válvula de compuerta principal.

Se procede a medir las revoluciones de la polea con el tacómetro mantenimiento esta constante a 600 rpm (velocidad optima de rotación obtenida de la práctica N°1) con caudales diferentes, y al variar la carga y la apertura de los alabes móviles de forma gradual y creciente, simulando así el funcionamiento real de una turbina Francis.

Crea tres tablas a diferentes aperturas (25%, 50% y 100%)y diferentes caudales (Q) similar a la Tabla 1.

	Iabla I: Ioma de datos de Turbina Hidraulica Francis.												
	1	TABL	A 1.	DATO.	S DE LAE	BORA	TOF	RIO: T	URB	INA FI	RANCIS		
le toma de datos	Velocdad	Presión Manométrica	Altura	Caudal	Caudal		Fren	0	Par Mecánico	Velocidad Angular	Potencia Hidraulica	Potencia Mecánica	Eficiencia
N°d	N	Pman	Н	Q	Q	F1	F2	F1-F2	т	ω	Ph	Ρ	η
	RPM	[Bar]	[m]	MdJ	m^3/s	[N]	[N]	[N]	[N.cm]	[rad/s]	[w]	[w]	%
1											No.		
2													
3								-					
4									36				
5													
6									1.15				
7											1		
8								1			1		
9										27			
10									-				
11										_			

Analizar y graficar los resultados con curvas similares a la Figura 4 y Figura 5 (a medida que aumenta la carga, disminuyen las velocidades de rotación(RPM), pero aumentan las potencias, hasta llegar a una eficiencia máxima y luego decrecer).

Figura 1: Curvas Características para caudales diferentes. Fuente: Luis G, Olger. R. (2018).

4. Informe y Criterios de Evaluación

El informe se debe realizar de manera escrita al terminar la práctica.

- El informe de la práctica de laboratorio debe llevar:
- Objetivo de la práctica
- Marco Teórico.
- Procedimiento
- Cálculos y resultados.
- Fotografías
- Conclusiones de la práctica.
- Bibliografía.

Se evaluará: Asistencia (obligatoria a practica), Puntualidad, Disposición dentro de la práctica (Actitudinal y Aptitudinal), el informe como tal (redacción, marco teórico, cálculos y conclusiones).

Bibliografía

• Góngora Cruz, L. A., & Rojas Macedo, O. (2018). Diseño e Implementación de un módulo de turbina Francis para el laboratorio de energía de la escuela profesional de Ingeniería Mecánica, Mecánica-Eléctrica Y Mecatrónica. Universidad Católica de Santa María, Arequipa.

115

