

Universidad Católica de Santa María

Facultad de Ciencias e Ingenierías Físicas y Formales

Escuela Profesional de Ingeniería Mecánica, Mecánica Eléctrica y Mecatrónica

DISEÑO DE UNA MINICENTRAL SOLAR TÉRMICA DE 200KVA PARA ELECTRIFICACIÓN RURAL AISLADA EN EL DISTRITO DE VÍTOR

Tesis presentada por el Bachiller:

Rivera Vizcarra, Gustavo Carlos

Para optar el Título Profesional de:

Ingeniero Mecánico Electricista

Asesor: Ing. Chirinos Apaza, Luis Adrián

AREQUIPA – PERÚ

2018

Publicación autorizada con fines académicos e investigativos En su investigación no olvide referenciar esta tesis

Universidad Católica de Santa María

a (51 54) 382038 Fax:(51 54) 251213 🖂 ucsm@ucsm.edu.pe \$http://www.ucsm.edu.pe Apartado:1350

ESCUELA PROFESIONAL DE INGENIERÍA MECANICA, MECÁNICA ELÉCTRICA Y MECATRÓNICA

INFORME DICTAMINATORIO

VISTO

EL BORRADOR DE TESIS TITULADO:

"DISEÑO DE UNA MINICENTRAL SOLAR TERMICA DE 200KVA PARA ELECTRIFICACION RURAL AISLADA EN EL DISTRITO DE VITOR"

Presentado por el Bachiller:

RIVERA VIZCARRA GUSTAVO CARLOS

Nuestro **DICTAMEN** es:

Pacons O

OBSERVACIONES:

Sev OBSERVERCIEVES

Arequipa, 27 Nouiembre 2018

ING. LUIS CHIRINOS APAZA

ING. CAMILO FERNANDEZ BARRIGA

A mis hermanos y familiares por ser parte importante de mi vida, y sobre todo a mis padres Gustavo e Ida por todo el cariño, y por su apoyo y comprensión para poder sacar adelante este proyecto.

INTRODUCCION

La necesidad de lograr un equilibrio entre las diferentes regiones y fomentar su desarrollo, depende de que se logre implementar un suministro energético accesible y de calidad. Este suministro energético debe provenir de fuentes renovables para contribuir con el medio ambiente y poder frenar el cambio climático.

En la actualidad, la mayor parte de plantas generadoras de energía en el país son convencionales, utilizan como fuente de calor hidrocarburos, los cuales emiten grandes cantidades de gases que deterioran el medio ambiente provocando el calentamiento global. Hay una mayor tendencia en la forma de obtener energía de manera sustentable, una de ellas es la energía proveniente del Sol y en la cual se enfocará el presente proyecto.

Existen dos formas para aprovechar la energía proveniente del Sol, la primera es la energía solar térmica, la cual consiste en el aprovechamiento de la radiación que llega directamente del Sol, y la segunda es la energía solar fotovoltaica, que consiste en la transformación de la radiación solar en energía eléctrica mediante paneles fotovoltaicos. Existe una nueva opción para el aprovechamiento de la radiación solar, la cual es mediante la energía solar concentrada.

Esta técnica de concentración solar, consiste en transformar la energía térmica almacenada en energía eléctrica mediante un ciclo termodinámico. La producción de energía eléctrica mediante este sistema, es una de las tecnologías más limpias para el medio ambiente. Este tipo de diseño está dividido por sistemas: el campo solar, que es donde se almacena la energía que proviene del Sol, y el ciclo termodinámico de potencia, el cuál funciona con aceites orgánicos como fluido de trabajo, los cuales se calientan a diferentes temperaturas, según el tipo de aprovechamiento solar instalado.

En el presente trabajo de Tesis se va a diseñar una mini-central solar térmica para electrificación rural, el sistema de captación será mediante concentración solar, usando la tecnología de colectores cilindro parabólicos (CCP).

RESUMEN

El presente trabajo de tesis se ha enfocado principalmente en el diseño de una mini-central solar térmica de 200 kVA para electrificación rural aislada en el distrito de Vítor. El lugar donde se plantea instalar este proyecto es una zona que presenta una buena radiación solar, con un promedio anual de 6.20 kWh/m², donde también existe acceso al río Vítor, el cual va a servir para la refrigeración del condensador en el ciclo de potencia.

La principal propuesta de este proyecto es la de utilizar los recursos naturales como fuente energética, debido a que son energías limpias y renovables, y que son la energía del futuro. Para esto se ha evaluado el tipo de tecnología solar más adecuada y se concluyó que se va a utilizar la tecnología de colectores cilindro-parabólicos, debido a que el rango de temperatura ideal para esta tecnología es de 150° C – 400° C, el aceite escogido como fluido caloportador trabaja bien en el rango de temperaturas que soporta este tipo de tecnología para no tener degradaciones.

Se han tratado aspectos como el diseño de la planta solar térmica, también se ha determinado los parámetros y equipos necesarios para el diseño de la minicentral, se escogió un tipo de fluido caloportador necesario para la operación de la planta y se simuló un segmento de la tubería a condiciones normales de operación para obtener valores reales de la mini-central solar térmica.

Finalmente se trató aspectos económicos de la mini-central solar térmica y el costo estimado es de 70.40 cS/./kWh, siendo este precio mucho menor si se masificaría este tipo de tecnologías.

Palabras clave: Mini-Central Solar Térmica, Sistema aislado, Recursos Naturales, Colectores Cilindro-Parabólicos, Ciclo Rankine, Fluido Caloportador.

iii

SUMMARY

The present thesis work has focused mainly on the design of a 200 kVA solar thermal mini-plant for isolated rural electrification in the district of Vitor. The place where it is proposed to install this project is an area that has a good solar radiation, with an annual average of 6.20 kWh/m², where there is also access to the Vítor River, which will serve for the cooling of the condenser in the cycle of power

The main proposal of this project is to use natural resources as an energy source, because they are clean and renewable energies, and they are the energy of the future. For this, the most appropriate type of solar technology has been evaluated and it was concluded that parabolic trough collector technology will be used, because the ideal temperature range for this technology is 150 ° C - 400 ° C, Oil chosen as a heat transfer fluid works well in the temperature range that this type of technology supports to avoid any degradation.

Aspects such as the design of the solar thermal plant have been addressed, the parameters and equipment necessary for the design of the mini-plant have also been determined, a type of heat transfer fluid necessary for the operation of the plant was chosen and a segment was simulated of the pipe to normal operating conditions to obtain real values of the solar thermal mini-plant.

Finally, economic aspects of the solar thermal mini-plant were discussed and the estimated cost is 70.40 cS/./kWh, this price being much lower if this type of technology were to be massified.

Key words: Mini Thermo Solar Power Plant, Isolated System, Natural Resources, Parabolic Cylinder Collector, Rankine Cycle, Heat Transfer Fluid.

INDICE GENERAL

INTRODUCCI	ONi
RESUMEN	ii
SUMMARY	iii
CAPÍTULO I	1
1. ASPECTO	OS GENERALES DE LA INVESTIGACIÓN1
1.1. OBJE	ETIVOS1
1.1.1. (OBJETIVO GENERAL
1.1.2. (OBJETIVOS ESPECÍFICOS
1.2. PRO	BLEMÁTICA1
1.3. JUST	TIFICACIÓN2
1.4. ALC/	ANCES
1.5. IMPC	DRTANCIA
1.5.1.	TECNOLÓGICA
1.5.2.	AMBIENTAL
CAPÍTULO II.	
2. ANTECED	DENTES
2.1. EL R	ECURSO SOLAR EN EL PERU4
2.1.1.	DISTRIBUCION ANUAL
2.1.2.	DISTRIBUCION ESTACIONAL
2.1.3. F	POTENCIALES ZONAS DE APROVECHAMIENTO6
2.2. PLAN	N DE ENERGÍAS RENOVABLES EN EL PERÚ9
2.2.1. (CAPACIDAD DE GENERACIÓN DE LAS ENERGÍAS RENOVABLES
HACIA EL	. AÑO 2040 10
2.2.2. I	NVERSIONES11
2.2.3. F	PROYECTOS DE ENERGÍAS RENOVABLES EN ZONAS RURALES . 11
2.2.4. F	PLANTAS SOLARES EN EL PERÚ12

2.2.5. PLANTAS SOLARES TERMOELÉCTRICAS CON TECNO	LOGÍA CCP
EN EL MUNDO	13
CAPÍTULO III	17
3. MARCO TEÓRICO	17
3.1. ENERGÍAS RENOVABLES NO CONVENCIONALES	17
3.1.1. CLASIFICACIÓN DE ENERGÍAS RENOVABLES	17
3.2. ENERGÍA SOLAR	19
3.2.1. TIPOS DE RADIACIÓN	21
3.2.2. RELACIÓN TIERRA – SOL	22
3.2.3. ORBITA TIERRA – SOL	22
3.3. COLECTORES SOLARES Y SUS APLICACIONES	23
3.3.1. CLASIFICACIÓN DE LOS COLECTORES SOLARES	23
3.3.2. TIPOS DE PLANTAS TERMOSOLARES	25
3.4. COMPARACIÓN ENTRE LAS TECNOLOGÍAS SOLARES	31
3.4.1. CENTRALES TERMOSOLARES: TORRE CENTRAL Y CCP	31
3.4.2. CENTRALES SOLARES FOTOVOLTAICAS	
3.4.2.CENTRALES SOLARES FOTOVOLTAICAS3.4.3.CENTRALESTERMOSOLARESVSCENTRALESCENTRALES	32 SOLARES
3.4.2.CENTRALES SOLARES FOTOVOLTAICAS3.4.3.CENTRALESFOTOVOLTAICASFOTOVOLTAICAS	32 SOLARES 32
 3.4.2. CENTRALES SOLARES FOTOVOLTAICAS	SOLARES 32 DLECTORES
 3.4.2. CENTRALES SOLARES FOTOVOLTAICAS	SOLARES 32 DLECTORES 34
 3.4.2. CENTRALES SOLARES FOTOVOLTAICAS	

4.2.2.	TUBO ABSORBENTE	.43
4.2.3.	FLUIDO CALORÍFICO A EMPLEAR	.44
4.3. AN	ÁLISIS DE LA GEOMETRÍA SOLAR	. 48
4.3.1.	FACTOR DE CONCENTRACIÓN	. 48
4.3.2.	DECLINACIÓN	.49
4.3.3.	ÁNGULO HORARIO	. 50
4.3.4.	ÁNGULO DE INCIDENCIA	.54
4.4. DIN	IENSIONAMIENTO DEL CAMPO SOLAR	.55
4.4.1.	PARÁMETROS INICIALES	.55
4.4.2.	CÁLCULO DEL FLUJO MÁSICO POR COLECTOR	.56
4.4.3. COLECT	CÁLCULO DEL INCREMENTO DE TEMPERATURA DEL FLUIDO P	OR . 58
4.4.4.	CÁLCULO DEL NÚMERO DE COLECTORES	.63
4.5. AN/	ÁLISIS DEL CICLO DE POTENCIA	.64
4.5.1.	PARÁMETROS INICIALES	.65
4.5.2.	ANÁLISIS TERMODINÁMICO	.65
4.5.3.	CÁLCULO DEL FLUJO DE VAPOR	.66
4.6. ANA	ÁLISIS DEL GENERADOR SÍNCRONO	.69
CAPÍTULO \	1	.70
5. SIMULA	CIÓN DE LA MINI-CENTRAL SOLAR TÉRMICA	.70
5.1. SIM	IULACIÓN DEL MODELO EN SOLIDWORKS	.70
5.1.1.	DESARROLLO DEL MODELO EN 3D	.70
5.1.2.	DEFINICIÓN DEL PROBLEMA	.71
5.2. SIM	IULACIÓN EN EES	.75
CAPÍTULO \	/I	.76
6. RESULT	ADOS	.76
CAPÍTULO \	/II	.79
7. ANÁLISI	S ECONÓMICO	.79
CONCLUSIC	DNES	.82

BIBLIOGRAFÍA	
ANEXOS	
PLANOS	

Publicación autorizada con fines académicos e investigativos En su investigación no olvide referenciar esta tesis

INDICE DE FIGURAS

Figura 2.1 - Energía Solar Incidente Diaria, Promedio Anual	8
Figura 2. 2 - Solar Electric Generating Systems - SEGS	14
Figura 2. 3 - Estación de Generación Solana	14
Figura 2. 4 - Proyecto de Energía Solar Génesis	15
Figura 2. 5 - Plataforma Solar de Extremadura Solaben	16
Figura 2. 6 - Planta Termosolar Noon I	16
Figura 3. 1 - Movimiento de la Tierra alrededor del Sol (Iqbal, 1983)	22
Figura 3. 2 - Esquema de un Sistema de Receptor Central	26
Figura 3. 3 - Detalle de un heliostato	27
Figura 3. 4 - Disco Parabólico. (a) Diagrama, (b) Foto de un Colector Eurodish	28
Figura 3. 5 - Colector Fresnel	29
Figura 3. 6 - Colector Stirling Eurodish	30
Figura 3. 7 - Colector Cilindro Parabólico EuroTrough	31
Figura 3. 8 - Colector Cilindro Parabólico	34
Figura 3. 9 - Esquema de un Tubo Absorbente	35
Figura 4. 1 - Irrigación Yuramayo - Vítor	39
Figura 4. 2 - Radiación Solar Arequipa (Enero - Abril)	40
Figura 4. 3 - Radiación Solar Arequipa (Mayo - Agosto)	40
Figura 4. 4 - Radiación Solar (Setiembre - Diciembre)	41
Figura 4. 5 - Componentes del Campo Solar	42
Figura 4. 6 - Factor de Concentración de un CCP	48
Figura 4.7 - Esfera celeste mostrando el ángulo de declinación solar (lqbal 1983)	49
Figura 4.8 - Mapa Horario Mundial	53
Figura 4.9 - Esquema del Ciclo de Potencia	63
Figura 4. 10 - Esquema del Ciclo de Potencia	64
Figura 4. 11 - Diagrama h - s del Ciclo de Potencia	65

Figura 4. 12 - Esquema de la Mini-Central Solar Térmica	. 68
Figura 5. 1 - Vista en sección de los elementos del tubo absorbente	.71
Figura 5. 2 - Parámetro del flujo másico	.72
Figura 5. 3 - Parámetros de presión de trabajo y temperatura	.73
Figura 5. 4 - Parámetro de la fuente de calor	.73
Figura 5, 5 - Diferentes niveles de mallado (Nivel 2 - Nivel 6)	74

Publicación autorizada con fines académicos e investigativos En su investigación no olvide referenciar esta tesis

INDICE DE GRÁFICOS

Gráfico 2. 1 - Irradiación Solar Extraterrestre - Hemisferio Sur5
Gráfico 2. 2 - Producción de Electricidad Nacional10
Gráfico 4.1 - Variación de la densidad con la temperatura46
Gráfico 4. 2 - Variación de la viscosidad con la temperatura46
Gráfico 4.3 - Variación del calor específico con la temperatura47
Gráfico 4. 4 - Variación de la conductividad térmica con la temperatura
Gráfico 6. 1 - Diagrama T - s del Ciclo de Potencia simulado en EES77
Gráfico 6. 2 - Diagrama h - s del Ciclo de Potencia simulado en EES77
Gráfico 7. 1 - Costos de Instalación, Factor de Capacidad y LCOE de las centrales termosolares
Gráfico 7. 2 - Costos de Instalación, Factor de Capacidad y LCOE de las centrales
fotovoltaicas
Gráfico 7.3 - Comparación de los costos de instalación entre las diferentes tecnologías
renovables

INDICE DE TABLAS

Tabla 2. 1 - Valores de las principales variables climáticas de las estaciones base	7
Tabla 2. 2 - Potencia Inslable con RER en el SEIN al 2040 (MW)	10
Tabla 2.3 - Inversiones Requeridas en Centrales - Total SEIN y RER al 2011-2040	11
Tabla 3. 1 - Costos de generación eléctrica a nivel mundial	20
Tabla 3. 2 - Clasificación en función de la razón de concentración	25
Tabla 4. 1 - Comparación entre colectores Solargenix y Eurotrough	43
Tabla 4. 2 - Comparación entre tubos absorbentes Schott y Siemens	44
Tabla 4. 3 - Valores de Coeficientes a, b, y c para los CCP	59
Tabla 4. 4 - Características turbina Siemens SST-040	64
Tabla 4. 5 - Análisis Termodinámico del Ciclo de Potencia	66
Tabla 4. 6 - Análisis Termodinámico del Ciclo de Potencia	69
Tabla 5. 1 - Piezas del tubo absorbente	70
Tabla 5. 2 - Propiedades de los materiales del tubo absorbente	72
Tabla 5. 3 - Resultados obtenidos con las diversas mallas	74
Tabla 6. 1 - Resultados simulados con el Software SolidWorks FlowSimulation	76
Tabla 6. 2 - Resultados termodinámicos del Ciclo de Potencia simulado en EES	78

LISTADO DE ACRÓNIMOS

APEMEC	Asociación de Pequeñas y Medianas Centrales
ССР	Colector Cilindro Parabólico
DGER	Dirección General de Electrificación Rural
ERNC	Energías Renovables No Convencionales
HTF	Heat Thermal Fluid (Fluido Caloportador)
LCOE	Levelized Cost of Electricity (Costo normalizado de la energía)
MINEM	Ministerio de Energía y Minas
OSINERGMIN	Organismo Supervisor de la Inversión en Energía y Minería
RER	Recursos Energéticos Renovables
SEGS	Solar Electric Generating Systems (Sistema de Generación
	de Energía Solar)
SEIN	Sistema Eléctrico Interconectado Nacional

UNIVERSIDAD Católica De Santa María

LISTADO DE SÍMBOLOS

AO	Adelanto de la hora oficial
A _{colector}	Área de superficie del colector
A _{tubo}	Área del tubo absorbente
С	Factor de concentración
ср	Calor específico del agua
ср	Calor específico del HTF
d _i	Diámetro interno del tubo absorbente
d _o	Diámetro externo del tubo absorbente
d_n	Número del día a escoger en el diseño
E _d	Radiación solar directa
ET	Ecuación del tiempo
F _e	Factor de ensuciamiento
H _B	Altura de bombeo
h	Entalpía en el ciclo de potencia
h _{ent}	Entalpía específica del HTF a la entrada del colector
h _{sal}	Entalpía específica del HTF a la salida del colector
LH	Longitud del huso horario
LL	Longitud del lugar
'n	Flujo másico del HTF
\dot{m}_R	Flujo de refrigeración para el condensador
\dot{m}_v	Flujo de vapor del ciclo de potencia
P_B	Potencia de bombeo
<i>P</i> ₁	Presión a la entrada de la turbina
P_2	Presión en el condensador

UNIVERSIDAD CATÓLICA DE SANTA MARÍA

Q	Caudal de bombeo
\dot{Q}_B	Transferencia de calor en el condensador
$\dot{Q}_{colec-amb}$	Pérdidas térmicas entre el colector y el ambiente
$\dot{Q}_{colec-fluido}$	Pérdidas térmicas entre el colector y el fluido
$\dot{Q}_{sol-colector}$	Pérdidas térmicas entre el sol y el colector
$\dot{Q}_{t\acute{e}rmica}$	Potencia térmica del campo solar
Re	Número de Reynolds
ТО	Tiempo oficial del lugar
T _{amb}	Temperatura ambiente del lugar
T _{ent}	Temperatura de entrada del HTF en los colectores
T _{sal}	Temperatura de salida del HTF en los colectores
T _{med}	Temperatura media entre la entrada y salida del HTF
<i>T</i> ₁	Temperatura a la entrada de la turbina
UL	Coeficiente de pérdidas térmicas
v	Velocidad del HTF
₩ _{bornes}	Potencia en los bornes del generador
₩ _{eje}	Potencia en el eje de la turbina
Γ	Ángulo diario
γ	Peso específico del fluido
Δh	Incremento de la entalpía del HTF
ΔT	Variación de temperaturas en el condensador
δ	Declinación solar
η_{ad}	Eficiencia adiabática de la turbina
η_{ge}	Eficiencia del generador eléctrico
η_{alobal}	Eficiencia global de los CCP

UNIVERSIDAD Católica De Santa María

η_{opt}	Eficiencia óptica
η_{th}	Eficiencia térmica
η_{mec}	Eficiencia mecánica
η	Eficiencia de la bomba de refrigeración
$K(\varphi)$	Modificador del ángulo de incidencia
μ	Viscosidad dinámica
ρ	Densidad
ϕ	Ángulo de la latitud del lugar
φ	Ángulo de incidencia
ω	Ángulo horario

Publicación autorizada con fines académicos e investigativos En su investigación no olvide referenciar esta tesis

CAPÍTULO I

1. ASPECTOS GENERALES DE LA INVESTIGACIÓN

1.1. OBJETIVOS

1.1.1. OBJETIVO GENERAL

Diseñar una Mini-central Solar Térmica con una capacidad de 200 kVA con tecnología de colector cilindro parabólico, para electrificar la zona de la Irrigación Yuramayo, en el distrito de Vítor.

1.1.2. OBJETIVOS ESPECÍFICOS

Analizar las diferentes tecnologías solares para la generación de electricidad y escoger la tecnología más adecuada que brinde las mejores ventajas para el desarrollo del proyecto.

Identificar una zona con potencial adecuado para la instalación de la minicentral solar térmica, la cual producirá electricidad mediante concentradores solares.

Dimensionar la Mini-central Solar Térmica para satisfacer la demanda de la población en la zona de la Irrigación Yuramayo, distrito de Vítor.

Contribuir al desarrollo de la electricidad en las zonas rurales mediante el uso de energías renovables y disminuir el uso de combustibles fósiles.

1.2. PROBLEMÁTICA

La falta de acceso a la electricidad por parte del sistema interconectado limita la posibilidad de desarrollo en las zonas rurales. Limita la calidad de vida y la disponibilidad de obtener una buena educación. Los elevados niveles de pobreza y el creciente desarrollo de las áreas urbanas hacen difícil que se invierta en suministros básicos, tales como la electricidad. En este sentido, se debe analizar diferentes formas de cómo generar electricidad a partir de las energías renovables para la electrificación rural aislada.

1.3. JUSTIFICACIÓN

El Plan Bicentenario establece como prioridad el crecimiento económico, con aumento del trabajo y reducción de la pobreza y desigualdades. El avance de las tecnologías y los nuevos inventos abren un panorama promisorio para la población.

La contaminación que se está produciendo durante más de un siglo y el incremento del calentamiento global por parte de los combustibles fósiles, contribuyen a destruir el ambiente. Es por esta razón que se necesitan explotar otras formas de generación de electricidad para sustituir a los combustibles fósiles.

Este estudio específico se enfoca en el diseño de una Mini-central Solar Térmica, con una capacidad de generación de 200 kVA, para brindar el servicio de energía eléctrica a una parte del distrito de Vítor.

Este proyecto se enfoca al ahorro y uso eficiente de la energía, mediante el uso de fuentes de energías limpias y renovables, cuyo principal objetivo será plantear soluciones para el beneficio de la población.

1.4. ALCANCES

En el presente proyecto de Tesis se analizará el potencial de energía solar en el distrito de Vítor, para la instalación de una mini-central solar térmica para electrificación rural.

Se tomará en cuenta el análisis del potencial de energía solar y la potencia en bornes para dimensionar el número de colectores que tendrá la minicentral.

Posteriormente se modelará el tubo absorbente con el programa SolidWorks, usando el complemento FlowSimulation y se realizará simulaciones del flujo bajo condiciones reales de operación, y se procederá a determinar el fluido más apropiado para ser usado en la mini-central.

También se va a utilizar el programa EES, con el cual se simulará la parte relacionada al circuito de vapor.

1.5. IMPORTANCIA

1.5.1. TECNOLÓGICA

Debido a que no existe un buen desarrollo en el campo de generación eléctrica mediante el uso de energías renovables, es indispensable investigar y obtener los conocimientos necesarios para el diseño y aplicación de tecnologías para poder generar electricidad sin la necesidad de usar combustibles fósiles.

1.5.2. AMBIENTAL

La generación de electricidad mediante energías renovables, significa que la energía es limpia y que no produce residuos contaminantes, así como tampoco producen gases de efecto invernadero.

CAPÍTULO II

2. ANTECEDENTES

2.1. EL RECURSO SOLAR EN EL PERU

En el Perú, las condiciones orográficas, climáticas y oceanográficas, determinan la existencia de las tres regiones naturales: Costa, Sierra y Selva. La Costa es la región limitada por el Océano Pacífico y las laderas andinas por debajo de los 2000 msnm. La Sierra es la región de la Cordillera de los Andes, caracterizada por la presencia de cumbres y montañas con alturas de hasta 6000 msnm. La Selva es la región formada por dos zonas, el bosque tropical amazónico o selva baja y las pendientes y valles al este de los Andes bajo los 2000 msnm conocidos como selva alta.

2.1.1. DISTRIBUCION ANUAL

A nivel anual, la zona de mayor potencial de energía solar del territorio peruano se encuentra principalmente en la costa sur (16° a 18° S), donde se dispone de 6.0 a 6.5 kW h/m². Otras zonas en las que se registra alta disponibilidad de energía solar diaria, entre 5.5 a 6.0 kW h/m² son la costa norte (3° a 8° S) y gran parte de la sierra sobre los 2500 msnm, siendo en orden de importancia en cuanto a su extensión superficial: la sierra sur, la sierra central y la sierra norte.

Es importante acotar que la mayor variación anual (desviación estándar) de los valores de energía solar recibida en la superficie está en la costa sur, seguido por la costa central, selva norte, costa norte y sierra sur. Las zonas de menor variación anual son la selva central y sur, la sierra central y parte de la sierra norte.

2.1.2. DISTRIBUCION ESTACIONAL

Durante el verano austral (diciembre a marzo) el sol se encuentra irradiando el hemisferio sur con mayor intensidad, sin embargo, este hecho no se traduce en los mapas, especialmente en la parte norte y central de la

UNIVERSIDAD Católica De Santa María

5

sierra, y selva (0 a 10° S y 70 a 79° W), las mismas que presentan valores relativamente bajos de energía solar.

Durante el invierno, la energía solar recibida disminuye en general en todo el territorio debido a que el sol, se encuentra irradiando más intensamente el hemisferio norte (solsticio de invierno). Este efecto estacional se puede apreciar claramente en el comportamiento de la irradiación solar extraterrestre.

Gráfico 2. 1 - Irradiación Solar Extraterrestre - Hemisferio Sur Fuente: Atlas de Energía Solar del Perú

En primavera, el sol inicia su retorno en su marcha aparente hacia el hemisferio sur, determinando disminución de la humedad atmosférica, debido a la ausencia de nubosidad y de lluvias (condiciones de estiaje o estación seca) en la sierra norte y central, por lo que la transmisividad de la atmósfera alcanza sus máximos valores, registrándose consecuentemente los más altos valores de energía solar diaria recibida en esta región en el mes de noviembre. Asimismo, la región de selva alcanza también sus mayores valores en este mes, especialmente la selva norte.

La sierra sur y parte de la central, muestran altos valores de energía solar, presentándose los máximos a fines de primavera y durante el verano, lo cual se debe a que se encuentra menos influenciada por los controladores climáticos que generan los sistemas nubosos.

En términos generales, en la región de la costa central y sur ocurren valores altos de heliofanía y por lo tanto altos valores de energía solar en la época del verano austral; sin embargo, es necesario detallar algunas excepciones. En la franja costera cercana al litoral, ubicada por debajo de los 600 m de altura, el comportamiento descrito anteriormente cambia durante fines de otoño, invierno e inicios de primavera en que esta región muestra valores marcadamente bajos de heliofanía y energía solar, ya que la transmisividad atmosférica disminuye considerablemente debido a la presencia permanente e intensificación durante estos meses de la inversión térmica, que determina una capa nubosa baja (estratiforme) e incluso fuerte presencia de nieblas en esta región.

A fines de primavera, en la zona sur de la costa por encima de los 1000 msnm, se alcanzan los mayores valores de energía solar durante el año y de todo el territorio nacional en las terrazas desérticas de Arequipa, Moquegua y Tacna (13,5 a 18° S y 70 a 76° W), lo cual se debe a que están ubicadas encima de la capa de inversión térmica y presentan cielo despejado durante todo el año.

2.1.3. POTENCIALES ZONAS DE APROVECHAMIENTO

En la tabla 2.1 se indica el rango de valores de insolación global promedio de cada una de las estaciones base dispuestas en las diferentes regiones del Perú. La figura 2.1 muestra el Mapa de Energía Solar Incidente Anual Promedio.

Estación meteorológica	Energía solar diaria (kW h/m ²)	Heliofanía relativa (%)	Temperatura máxima (°C)	Temperatura mínima (°C)	Precipitación total (mm/año)	
Costa						
Miraflores	5,75	56	30,7	19,3	216	
A. Von Humboldt	4,06	40	23,3	15,5	16	
San Camilo	5,92	61	28,7	13,4	11	
La Joya	7,03	75	27.0	10,1	77	
Sierra						
Bambamarca	4,56	44	19,4	9,5	737	
Weberbauer	4,92	49	21,3	7,6	644	
Cosmos	4,92	46	9,2	-0,7	1 047	
Huayao	6,00	56	19,6	4,4	765	
Granja Kcayra	5,44	53	20,7	3,7	674	
Chuquibambilla	6,08	59	16,8	-2,4	715	
Puno	6,36	70	14,7	2,0	753	
Characato	6,50	73	22,8	6,8	78	
Selva						
San Ramón SM	4,67	41	31,3	20,8	2 158	
El Porvenir	3,89	41	32,5	20,4	1 041	
Bellavista	4,78	40	32,2	20,9	928	

Tabla 2. 1 - Valores de las principales variables climáticas de las estaciones base

Fuente: Atlas de Energía Solar del Perú

Publicación autorizada con fines académicos e investigativos En su investigación no olvide referenciar esta tesis REPOSITORIO DE TESIS UCSM

8

Figura 2.1 - Energía Solar Incidente Diaria, Promedio Anual Fuente: Atlas de Energía Solar del Perú

Q

2.2. PLAN DE ENERGÍAS RENOVABLES EN EL PERÚ

La planificación energética será la principal herramienta para revisar el entorno y reformular estrategias para una política de largo plazo, que permita observar los escenarios posibles en el desarrollo de la demanda y de la oferta, además de los proyectos que debemos emprender para hacerlos posibles. El Ministerio de Energía y Minas – MINEM con el apoyo de la Comisión Consultiva han desarrollado en el siguiente plan estratégico:

"El Plan 2014 – 2025 se basa en algunos supuestos; en particular propone tres hipótesis centrales. En primer lugar, se considera que la economía nacional crecerá en un promedio 4.5% anual y, en un escenario más optimista, 6.5% anual, situación que permitiría confirmar que las reservas e infraestructuras sean suficientes para seguir soportando altas tasas de crecimiento.

En segundo lugar, se postula que el nivel de los precios energéticos en el mercado nacional seguirá las tendencias de los precios mundiales de la energía, a excepción del gas, cuyo precio reflejará las condiciones contractuales actuales e incorporará más lotes con precios acordes a la oferta y demanda nacional.

En tercer lugar, se plantea la existencia actual de la disponibilidad de recursos, basados en el hecho de que actualmente se cuenta con reservas de producción y recursos de hidroelectricidad, gas natural y energías renovables no convencionales, todos ellos ampliamente preparados para enfrentar el crecimiento económico propuesto."

Latinoamérica es una región del planeta abundante en potencial de energías renovables y se constituye actualmente como la región que tiene mayor participación en cuanto a fuentes convencionales se trata. El gráfico 2.2 registra los niveles en la producción nacional de electricidad.

Gráfico 2. 2 - Producción de Electricidad Nacional

2.2.1. CAPACIDAD DE GENERACIÓN DE LAS ENERGÍAS RENOVABLES HACIA EL AÑO 2040

La capacidad de generación a ser instalada en el SEIN de los Recursos Energéticos Renovables (RER) al año 2040 se estima en 4321 MW, que representa el 17.3% respecto a la potencia total instalada en dicho año. Lo cual representa un gran desafío al momento de aprovechar al máximo la disponibilidad física de las fuentes de RER existentes en el país. La tabla 2.2 representa la potencia instalable con RER hacia el año 2040.

	10619	
Tecnologías	Nueva Capacidad - MW	Porcentaje
rechologias	Total	%
Mini-Hidro	496	11.5%
Eólicos	1,342	31.1%
Solares	360	8.3%
Geotérmicas	1,500	34.7%
Biomasa	623	14.4%
Total	4,321	100%

Tabla 2. 2 - Potencia Inslable con RER en el SEIN al 2040 (MW)

Fuente: InfOsinergmin

2.2.2. INVERSIONES

El monto de las inversiones requeridas para alcanzar la potencia instalable al año 2040, mediante la implementación de centrales RER se estima en US\$ 8757 millones.

Tecnología	Montos de Inversión – Millones de US\$
Hidroeléctricos	10,187
Térmicos	5,584
Eólicos	3,159
Solares	1,072
Geotérmica	3,090
Biomasa	1,436
Total	24,528
Total RER	8,757

Tabla 2. 3 - Inversiones Requeridas en Centrales - Total SEIN y RER al 2011-2040

Fuente: InfOsinergmin

2.2.3. PROYECTOS DE ENERGÍAS RENOVABLES EN ZONAS RURALES

La Dirección General de Electrificación Rural del MEM (DGER) debe continuar con los proyectos RER, utilizando los paneles solares y generadores eólicos en localidades rurales y/o comunidades nativas muy aisladas, donde no es posible llegar con los sistemas convencionales.

Se estima una inversión mayor a los US\$ 350 millones para el desarrollo de le electrificación rural con energías renovables y US\$ 860 millones para usos productivos para el periodo 2012 – 2040, con ello el coeficiente de electrificación rural alcanzará el 93.1%.

Actualmente hay un acuerdo de instalación progresiva de 150 mil paneles solares en zonas rurales del país, que se ha iniciado en abril de 2017 y terminará en julio de 2019, y que beneficiará a más de 750 mil personas de las zonas rurales.

2.2.4. PLANTAS SOLARES EN EL PERÚ

Las centrales solares en el Perú se están implementando paulatinamente. A continuación, se detallan las plantas solares instaladas:

- La Central Majes Solar 20T, ubicada en el distrito de Majes, Caylloma

 Arequipa, tiene una potencia instalada de 20 MW. La central está constituida por 55704 módulos fotovoltaicos de capa fina con potencias de 350, 370, 390 y 410 W, todos ellos orientados hacia el Norte y con una inclinación de 15° sobre la horizontal. La radiación solar máxima en la zona del proyecto es de 724 W/m².
- La Central Solar Repartición 20T, ubicada en el distrito de La Joya, Caylloma – Arequipa, tiene una potencia instalada de 20 MW. La central está constituida por 55704 módulos fotovoltaicos de capa fina con potencias de 350, 370, 390 y 410 W, todos ellos orientados hacia el Norte y con una inclinación de 15° sobre la horizontal. La radiación solar máxima en la zona del proyecto es de 724 W/m².
- La Central Tacna Solar, ubicada en Tacna, tiene una potencia instalada de 20 MW. La central está constituida por 74988 módulos fotovoltaicos, todos ellos de estructura metálica en acero galvanizado. La estructura está anclada sobre pilotes circulares de hormigón y está equipada con 182 sistemas de seguimiento solar.
- La Central Panamericana Solar, ubicada en Mariscal Nieto Moquegua, tiene una potencia instalada de 20 MW, está constituida por 72000 módulos fotovoltaicos, todos ellos de estructura metálica en acero galvanizado. La estructura está anclada sobre pilotes circulares de hormigón y está equipada con 174 sistemas de seguimiento solar.
- La Central Moquegua FV, ubicada en Mariscal Nieto Moquegua, tiene una potencia instalada de 16 MW, está constituida por módulos fotovoltaicos de 280 W, instalados sobre estructuras metálicas en acero galvanizado. La estructura está anclada sobre pilotes circulares

de hormigón. La central está equipada con sistemas de seguimiento solar. El seguidor solar de un eje horizontal consta de una serie de vigas de torsión orientadas en dirección Norte-Sur sobre las que se encuentran montados los módulos solares fotovoltaicos en filas.

- La Central Solar Rubí, ubicada en Mariscal Nieto Moquegua, tiene una potencia instalada de 144.48 MW, está constituida por 560880 módulos de 320 W. Su estructura es de seguidor horizontal de 1 eje.
- La Central Solar Intipampa, ubicada en Mariscal Nieto Moquegua, tiene una potencia instalada de 40 MW, está constituida por 138120 módulos de 320 W. Su estructura es de seguidor horizontal de 1 eje.

2.2.5. PLANTAS SOLARES TERMOELÉCTRICAS CON TECNOLOGÍA CCP EN EL MUNDO

Las centrales solares termoeléctricas cuya tecnología se considera madura en estos momentos, y que supone más del 95% de la potencia de generación termosolar instalada en el mundo, es la tecnología CCP. Esta tecnología consiste en concentrar la radiación solar a lo largo de una línea recta que oscila entre los 600 y 800 metros de longitud. El fluido caloportador (HTF), esto es, el fluido que transporta la energía que es captada en los concentradores cilindro-parabólicos, entra por uno de los extremos a una temperatura y con una velocidad determinadas, y sale por el otro extremo a una termperatura superior. A continuación, se detallan las Plantas Solares Termoeléctricas más importantes:

Los Sistemas de Generación de Energía Solar (SEGS) del desierto Mojave en California, cuenta actualmente con una capacidad instalada de 354 MW y genera 662 GWh de energía al año. Este proyecto combina nueve instalaciones solares, divididas en tres secciones: SEGS I-II (44 MW), SEGS III-VI (150 MW) y SEGS VII-IX (160 MW).

Figura 2. 2 - Solar Electric Generating Systems - SEGS Fuente: https://elperiodicodelaenergia.com

La estación de generación Solana es una planta termosolar situada en el desierto de Arizona. Tiene una capacidad total de 280 MW brutos, a partir de dos de 140 MW generadores de la turbina de vapor, que es suficiente para abastecer a 70000 hogares evitando al mismo tiempo alrededor de 475000 toneladas de CO_2 al año.

Figura 2. 3 – Estación de Generación Solana Fuente: https://elperiodicodelaenergia.com

El proyecto de Energía Solar Génesis es una planta de 250 MW, ubicada en el desierto Mojave sobre una extensión de 780 hectáreas en Riverside, California. La planta de energía solar consta de dos secciones independientes de 125 MW y tiene una capacidad de producción de 560 GWh anuales.

Figura 2. 4 - Droyecto de Energía Solar Génesis Fuente: https://elperiodicodelaenergia.com

La Plataforma Solar Extremadura de 200 MW es el mayor complejo termosolar en Europa y una de las mayores de su tipo en el mundo, ubicada en la provincia de Cáceres, Extremadura, España. El complejo fue construido en dos fases y compuestas por cuatro plantas de energía solar concentrada, Solaben 1, 2, 3 y 6, con una capacidad instalada de 50 MW cada una.

Figura 2. 5 - Plataforma Solar de Extremadura Solaben Fuente: https://elperiodicodelaenergia.com

La planta termosolar Noor I de 160 MW es la primera fase de un megaproyecto solar en Ouarzazate, al sur de Marruecos, que está llamada a ser la más grande en el mundo, y que tiene como objetivo final alcanzar una capacidad de 2000 MW en el año 2020.

Figura 2. 6 - Planta Termosolar Noon I Fuente: https://elperiodicodelaenergia.com

CAPÍTULO III

3. MARCO TEÓRICO

3.1. ENERGÍAS RENOVABLES NO CONVENCIONALES

Las fuentes de energía renovable no convencionales, son fuentes de energía que se consideran como una alternativa para el suministro de electricidad, y que provienen de una fuente limpia, frente a las tradicionales que provienen de combustibles fósiles, y que generan gases de infecto invernadero.

La fuente primaria de las ERNC es energía renovable, es cíclica, se conserva, y para la esperanza de vida del ser humano, las fuentes primarias son inagotables. Así, por ejemplo, el viento, es la fuente primaria de la energía eólica, el sol, es la fuente primaria de la energía fotovoltaica, el agua es la fuente primaria de la energía hridroeléctrica y mareomotriz, así como la alta temperatura de la tierra en su interior en inmediaciones de volcanes, es la fuente primaria de la energía geotérmica.

Recientemente, en América Latina, la utilización de las ERNC ha logrado ingresar a la oferta de los mercados de electricidad como consecuencia de una política energética de integración de energías limpias y bajas en carbono para la reducción de emisiones de CO₂.

3.1.1. CLASIFICACIÓN DE ENERGÍAS RENOVABLES

3.1.1.1. ENERGÍA SOLAR

La energía solar se fundamenta en el aprovechamiento de la radiación solar, y que puede ser utilizada directamente como fuente de energía térmica, para calentamiento de líquidos y ambientes, y para generación de potencia mecánica o eléctrica. Puede ser convertida directamente en energía eléctrica, por medio de efectos sobre determinados materiales, entre los cuales se destacan el termoeléctrico y el fotovoltaico.

- Energía Solar Térmica: Es la capacidad de un cuerpo de absorber, en forma de calor, la energía solar incidente en el mismo. Este sistema está compuesto por placas colectoras, las cuales son responsables por la absorción de la radiación, y un reservorio térmico en el cual serán almacenadas los fluidos líquidos o gaseosos calentados durante el proceso de captación. Su uso es básicamente para calentamiento de agua para residencias, hospitales, etc., además de aire caliente para secado de granos, gases para accionamiento de turbinas, etc.
- Energía Solar Fotovoltaica: Las células fotovoltaicas son las encargadas de generar energía eléctrica a partir de la luz, al conjunto de células fotoeléctricas se les denomina placa o panel fotovoltaico. La aplicación de la energía solar fotovoltaica es una excelente solución para llevar energía eléctrica a lugares remotos o de difícil acceso.

3.1.1.2. ENERGÍA EÓLICA

La energía del viento se deriva del calentamiento diferencial de la atmósfera por el sol, y las irregularidades de la superficie terrestre. Aunque sólo una pequeña parte de la energía solar que llega a la tierra se convierte en energía cinética del viento, la cantidad total es enorme.

Con la ayuda de los aerogeneradores o generadores eólicos podemos convertir la fuerza del viento en electricidad. Éstos tienen usos muy diversos y pueden satisfacer demandas de pequeña potencia (bombeo de agua, electrificación rural, etc.) o agruparse y formar parques eólicos conectados a la red eléctrica.

3.1.1.3. ENERGÍA HIDRÁULICA

La energía hidráulica tiene su origen en el "ciclo del agua", generado por el Sol, al evaporar las aguas de los mares, lagos, etc. Esta agua cae en forma de lluvia y nieve sobre la Tierra y vuelve hasta el mar, donde el ciclo se reinicia.
La energía hidráulica se obtiene a partir de la energía potencial asociada a los saltos de agua y a la diferencia de alturas entre dos puntos del curso de un río.

Las centrales hidroeléctricas transforman en energía eléctrica el movimiento de las turbinas que se genera al precipitar una masa de agua entre dos puntos a diferente altura y, por tanto, a gran velocidad.

3.1.1.4. ENERGÍA GEOTÉRMICA

La energía geotérmica es aquella energía que puede ser obtenida por el aprovechamiento del calor del interior de la Tierra. Parte del calor interno de la Tierra (5000°C) llega a la corteza terrestre. En algunas zonas del planeta, cerca de la superficie, las aguas subterráneas pueden alcanzar temperaturas de ebullición, y, por tanto, servir para accionar turbinas eléctricas o para calentar. El calor del interior de la Tierra se debe a varios factores, entre los que destacan el gradiente geotérmico y el calor radiogénico.

3.1.1.5. ENERGÍA DE LA BIOMASA

La formación de biomasa a partir de la energía solar se lleva a cabo mediante la fotosíntesis. Las plantas que contienen clorofila, transforman el dióxido de carbono y el agua de productos minerales sin valor energético, en materiales orgánicos con alto contenido energético y a su vez sirven de alimento a otros seres vivos. Mediante estos procesos, la biomasa almacena a corto plazo la energía solar en forma de carbono. La energía almacenada en el proceso fotosintético puede ser posteriormente transformada en energía térmica, eléctrica o carburantes de origen vegetal.

3.2. ENERGÍA SOLAR

La energía solar es una fuente de energía de origen renovable, obtenida a partir del aprovechamiento de la radiación electromagnética procedente del sol. El calor y la luz del Sol pueden aprovecharse por medio de captadores como células fotovoltaicas, helióstatos o colectores térmicos, que pueden transformarla en energía eléctrica o térmica.

Las tecnologías solares se clasifican en pasivas o activas según cómo capturan, convierten y distribuyen la energía solar. Las tecnologías activas incluyen el uso de paneles fotovoltaicos y colectores térmicos. Entre las técnicas pasivas, se encuentran técnicas enmarcadas en la arquitectura bioclimática; la orientación de los edificios al Sol, la selección de materiales con una masa térmica favorable o con propiedades para la dispersión de luz, así como el diseño de espacios mediante ventilación natural.

La fuente de energía solar más desarrollada en la actualidad es la energía solar fotovoltaica. Su coste se ha reducido, aumentando a su vez la eficiencia, y su coste medio de generación eléctrica ya es competitivo con las fuentes de energía convencionales. La energía solar termoeléctrica está reduciendo sus costes también de forma considerable.

FUENTE		COSTO GENERACION	
		(US\$ centavos / kWh)	
Carbór	ı	4 - 5.5	
Gas Natu	ral	3 - 4	
Gas Hyd	ro	1.8 - 3	
Combustó	ileo	3.9 - 5.3	
Nuclea	r	2.4 - 7.2	
Geotern	nia	4.5 - 8.5	i
Mini Hyd	Iro	5 - 10	
Biomas	a	4 - 9	
Eólico		3 - 8	
Fotovolta	ico	30 - 80	
Solar Téri	nica	12 - 18	

Tabla 3. 1 - Costos de generación eléctrica a nivel mundial

Fuente: APEMEC

3.2.1. TIPOS DE RADIACIÓN

En función de cómo reciben la radiación solar los objetos situados en la superficie terrestre, se pueden distinguir los siguientes tipos de radiación:

- Radiación Directa: Es aquella que llega directamente del sol sin haber sufrido cambio alguno en su dirección. Este tipo de radiación se caracteriza por proyectar una sombra definida de los objetos opacos que la interceptan.
- Radiación Difusa: Parte de la radiación que atraviesa la atmósfera es reflejada por las nubes o absorbida por estas. Esta radiación, que se denomina difusa, va en todas direcciones, como consecuencia de las reflexiones y absorciones, no solo de las nubes sino de las prácticas de polvo atmosférico, montañas, árboles, edificios, el propio suelo, etc. Este tipo de radiación se caracteriza por no producir sombra alguna respecto a los objetos opacos interpuestos. Las superficies horizontales son las que más radiación difusa reciben, ya que ven toda la bóveda celeste, mientras que las verticales reciben menos porque solo ven la mitad.
- Radiación Reflejada: La radiación reflejada es, como su nombre indica, aquella reflejada por la superficie terrestre. La cantidad de radiación depende del coeficiente de reflexión de la superficie, llamado también albedo. Las superficies horizontales no reciben ninguna radiación reflejada, porque no ven ninguna superficie terrestre y las superficies verticales son las que más radiación reflejada reciben.
- Radiación Global: Es la radiación total. Es la suma de las tres radiaciones. En un día despejado, con cielo limpio, la radiación directa es preponderante sobre la radiación difusa. Por el contrario, en un día nublado no existe radiación directa y la totalidad de la radiación que incide es difusa.

3.2.2. RELACIÓN TIERRA – SOL

La literatura solar contiene una gran variedad de sistemas, métodos y ecuaciones para establecer las relaciones astronómicas Tierra–Sol y calcular la posición del Sol en cualquier momento. Estos cálculos se pueden dividir en dos grupos. El primero de ellos consiste en la aplicación de fórmulas y algoritmos sencillos, los cuales, mediante la introducción del día del año, estiman con una precisión adecuada los parámetros básicos de la posición del Sol, como pueden ser la distancia Tierra–Sol, la declinación solar o la ecuación del tiempo (Cooper, 1969; Spencer, 1971; Perrin de Brichambaut, 1975 y Lamm, 1981). El segundo consiste en la aplicación de algoritmos más complejos (Walraven, 1978; Michalsky, 1988; Blanco-Muriel et al., 2001), los cuales dan la posición precisa del sol en un instante determinado, en coordenadas eclípticas, celestes (declinación) y horizontales (cenit, azimut).

3.2.3. ORBITA TIERRA - SOL

La tierra gira alrededor del Sol en una órbita elíptica, con el Sol ubicado en uno de sus focos. La cantidad de radiación solar que llega a la Tierra es inversamente proporcional al cuadrado de la distancia al Sol, por lo cual un valor preciso de la distancia Tierra – Sol es importante.

Figura 3. 1 – Movimiento de la Tierra alrededor del Sol (Iqbal, 1983) Fuente: Atlas Climático de Irradiación Solar a partir de imágenes del Satélite NOAA

3.3. COLECTORES SOLARES Y SUS APLICACIONES

En cuanto a las tecnologías existentes, hay tres que sobresalen: los sistemas de colectores cilindro parabólicos, los sistemas de receptor central y los discos parabólicos. Los colectores cilindro parabólicos y los discos parabólicos concentran la radiación solar en un eje, mientras que los sistemas de receptor central lo hacen en un punto, alcanzando mayores relaciones de concentración.

3.3.1. CLASIFICACIÓN DE LOS COLECTORES SOLARES

Existen diversos tipos de colectores solares, que se clasifican principalmente en función de ciertos aspectos.

3.3.1.1. EN FUNCIÓN DE SU APROVECHAMIENTO SOLAR

En forma general, los colectores se clasifican según el modo en que funcionan con energía solar global, estos son los estacionarios, y los colectores que funcionan únicamente con radiación solar directa y que necesitan de un sistema de seguimiento solar a lo largo del día. Este tipo de colectores que funcionan por seguimiento solar se dividen de acuerdo a su grado de libertad de movimiento, los absorbedores tubulares de un grado de libertad y los absorbedores puntuales con dos grados de libertad.

3.3.1.2. EN FUNCIÓN DE LA TEMPERATURA DEL FLUIDO

El fluido caloportador (HTF), puede trabajar a diversas temperaturas según sus diversas aplicaciones. El tipo de fluido a utilizar determina el rango de temperaturas de operación del campo solar, lo que al final influirá en el rendimiento del ciclo de potencia.

Sistemas de Baja Temperatura (30°C – 100°C)

Este rango de temperaturas se obtiene con los colectores planos. Entre sus aplicaciones están las de calentamiento de aguas sanitarias y de piscinas, calefacción, secado, desalinización y destilación. Por lo general estos sistemas son híbridos, ya que son usados con apoyo de otros tipos de energía.

Sistemas de Media Temperatura (100°C – 400°C)

Estas temperaturas se alcanzan con concentradores lineales o esféricos y son usados en procesos industriales, refrigeración, procesos químicos y desalinización.

• Sistemas de Alta Temperatura (400°C – 3000°C)

Estas altas temperaturas se alcanzan gracias a los concentradores puntuales como los de discos parabólicos y los campos de heliostatos o centrales de torre. Se utilizan en centrales solares fototérmicas, fotovoltaicas y fotoquímicas.

3.3.1.3. EN FUNCIÓN A LA RAZÓN DE CONCENTRACIÓN

La razón de concentración superficial se define como el cociente del área de apertura del concentrador entre el área de absorción del receptor, y se denota por la letra "C".

 $C = \frac{\acute{A}rea\ de\ apertura}{\acute{A}rea\ de\ absorción} = \frac{\acute{A}rea\ del\ colector}{\acute{A}rea\ del\ receptor}$

Dentro del colector existen dos elementos básicos: el concentrador y el receptor. El concentrador constituye el sistema óptimo, y es la parte del colector que dirige la radiación sobre el receptor. En el receptor la radiación es absorbida y se convierte en otro tipo de energía.

			Nombre	Croquis	Razón de concentració n "C"	Rango Temperatura alcanzada [Cº]
Seguidores	Seguimiento a un eje	Absorbedores tubulares	Colector Parabólico Compuesto CPC		1 < C < 15	70 < T# <300
			Colector Cilíndrico Parabólico CCP		15 < C < 40	70 < T≇ < 350
	Seguimiento a dos ejes	ejes Absorbedores puntuales	Disco Parabólico	\bigcirc	100 < C < 1000	70 < T# < 1500
			Torre Central		100 < C < 1500	150 < T≇ < 1500

Tabla 3. 2 - Clasificación en función de la razón de concentración

Fuente: Imágenes Google

3.3.2. TIPOS DE PLANTAS TERMOSOLARES

Dentro de las plantas de concentración de energía solar se pueden diferenciar varios tipos:

3.3.2.1. RECEPTOR SOLAR

Las plantas de receptor solar consisten en concentrar la radiación solar en un determinado receptor. La radiación es enfocada mediante un campo de heliostatos, que es un conjunto de espejos que pueden moverse mediante servomotores.

Figura 3. 2 - Esquema de un Sistema de Receptor Central Fuente: Solar Energy Engineering – Processes and Systems

Las ventajas de este tipo de plantas solares son su mayor factor de concentración, del orden de 1000:1, debido a que los heliostatos pueden enfocarse tanto vertical como horizontalmente.

Cada heliostato de una central de receptor central tiene de 50 a 150m² de superficie de reflexión, con cuatro espejos instalados sobre la estructura de un pilar.

Figura 3. 3 – Detalle de un heliostato Fuente: Solar Energy Engineering — Processes and Systems

3.3.2.2. DISCOS PARABÓLICOS

Un reflector de disco parabólico, es un colector focal en un punto que sigue la trayectoria del sol en dos ejes, concentrando la energía solar en un receptor localizado en un punto focal del disco. La estructura del disco debe seguir al sol para reflejar el rayo hacia el receptor térmico.

El receptor absorbe la radiación de la energía solar, convirtiendo la energía térmica en un fluido circulante. Los sistemas de disco parabólico pueden alcanzar temperaturas superiores a 1500°C.

Figura 3. 4 - Disco Parabólico. (a) Diagrama, (b) Foto de un Colector Eurodish

Fuente: Solar Energy Engineering – Processes and Systems

3.3.2.3. COLECTORES LINEALES FRESNEL

Este tipo de colectores concentran la radiación solar en tubos mediante multitud de espejos planos. Los espejos planos, debido a su forma simple que tienen, permiten una menor concentración de luz, en torno a 20:1. Existen plantas piloto de 6 MW y algunas pueden llegar hasta 150 MW, llegando a un rendimiento de solo 25%.

Figura 3. 5 - Colector Fresnel

Fuente: http://www.millenniumenergies.com/espanol-productos/fresnel/

3.3.2.4. COLECTOR STIRLING

Las centrales de disco Stirling constan de un disco parabólico que concentra la radiación en un bloque posicionado en el foco de la parábola que forma el espejo.

A diferencia de otras plantas, cada espejo genera independientemente energía debido a que el bloque contiene un motor Stirling que genera la energía eléctrica. El aparato completo sigue al sol, el disco y el receptor se mueven en conjunto obteniendo una eficiencia alta.

Figura 3. 6 - Colector Stirling Eurodish

Fuente: https://www.fing.edu.uy/if/solar/proyectos/PROYECTO_energ%C3%ADa_%20sol ar_Zabalza_Rev%201.pdf

3.3.2.5. COLECTORES CILINDRO PARABÓLICOS

Para alcanzar altas temperaturas con buena eficiencia, entonces se necesita de un sistema de colectores cilíndricos. Este sistema puede producir calor entre temperaturas de 50°C y 400°C. Los colectores cilindro parabólicos consisten en filas paralelas de espejos con forma de parábola que concentran la radiación a lo largo de la línea focal de dicha parábola.

Figura 3. 7 - Colector Cilindro Parabólico EuroTrough Fuente: www.sbp.de/en/html/projects/detail.html?id=1043

3.4. COMPARACIÓN ENTRE LAS TECNOLOGÍAS SOLARES

En los últimos tiempos ha surgido significativamente la implementación de los sistemas eléctricos mediante el uso de las energías renovables. Existen algunas predicciones sobre los costos de este tipo de energías, y todo indica que estos costos van a seguir bajando en los próximos años. A continuación, se va a proceder a comparar las tecnologías de generación eléctrica mediante los sistemas solares más representativos en la actualidad.

3.4.1. CENTRALES TERMOSOLARES: TORRE CENTRAL Y CCP

Dentro de las centrales termo solares, la más utilizadas son las centrales CCP y las centrales de receptor central. La primera concentra la radiación solar en una línea, mientras que la segunda concentra los rayos solares en el receptor de la torre. Actualmente la tecnología con una mayor potencia instalada en el mundo es la de CPP. Ambas tecnologías tienen la ventaja de poseer un sistema de almacenamiento, aportando energía a la red en las horas de mayor demanda. Los costos de instalación son mayores si se utiliza un sistema de almacenamiento, pero también se garantiza mayores factores de capacidad, haciendo esta inversión sustentable.

Los costos de operación y mantenimiento son superiores en comparación con las centrales solares fotovoltaicas, aunque estos costos están disminuyendo considerablemente en los últimos años.

3.4.2. CENTRALES SOLARES FOTOVOLTAICAS

La potencia instalada en este tipo de centrales ha pasado de 6.1 GW en el año 2006 a 291 GW a finales del 2016, haciendo de esta tecnología la que se ha implementado más rápidamente. Es por esta razón que esta tecnología ya está madura y es bien conocida, y se estima que para el año 2025 sus valores de eficiencia mejorarán, pasando de valores actuales de 18.8% - 23.5% a valores de 19.8% - 25%, habiendo un incremento del factor de capacidad para este tipo de sistemas.

Los costos de instalación de los módulos fotovoltaicos al 2016 han disminuido con respecto al año 2010 en un 83%, esta reducción se debe a los procesos de producción.

El factor de capacidad en estos sistemas se ha incrementado de 13.7% en el 2010 hasta 17.6% al final del 2016, debido a mejoras en la eficiencia de los módulos y a la utilización de sistemas de seguimiento solar.

3.4.3. CENTRALES TERMOSOLARES VS CENTRALES SOLARES FOTOVOLTAICAS

En cuanto a costos se refiere, las centrales de receptor central tienen costos de instalación superiores a los de las centrales CCP, los costos de operación y mantenimiento también son más elevados para las centrales de receptor central.

El rendimiento de las centrales de receptor central es más alto comparado con el rendimiento de las centrales CCP, esto se debe a que estas centrales

usan como fluido caloportador sales fundidas, y pueden alcanzar temperaturas de 560°C a más. En cambio, las centrales CCP usan como fluido caloportador aceite, que no puede sobrepasar los 400°C, debido a que en esta temperatura el aceite se degrada, y por esta razón no se consigue rendimientos termodinámicos del ciclo Rankine.

Los costos promedio de las centrales termosolares son variables, debido a que no es una tecnología madura y conocida como las centrales fotovoltaicas. El LCOE promedio de las centrales fotovoltaicas es menor en un 50% con respecto a las centrales termosolares. Los costos de operación y mantenimiento de las centrales fotovoltaicas son menores, debido a que no existen componentes rotantes, tampoco existe un ciclo térmico, y no hay un sistema de tuberías.

Un aspecto negativo sobre las centrales termosolares, es que solo producen energía con la radiación solar directa, en los días nublados la producción de energía se anula. En cambio, las centrales fotovoltaicas solo bajan su producción en los días nublados, pero no se anula.

Por otro lado, las centrales termosolares tienen la ventaja de que pueden almacenar energía, lo que posibilita poder entregar energía en las horas pico, siendo más rentables.

Otro aspecto que favorece a las centrales termosolares, es que este tipo de centrales tienen un generador eléctrico, y por lo tanto tienen una masa rotante, en cambio, las centrales fotovoltaicas producen energía de manera estática y no aportan ninguna inercia a sistema. Se han realizado estudios sobre el impacto que se tiene en la estabilidad dinámica del sistema: un sistema con baja inercia provoca mayores variaciones de frecuencia al momento en que la generación no iguala a la demanda. Por lo cual, hoy en día ningún sistema eléctrico fotovoltaico opera de manera estable.

3.5. TECNOLOGÍA DE PLANTAS TERMOSOLARES CON COLECTORES CILINDRO PARABÓLICOS

3.5.1. CAMPO SOLAR

Ocupa aproximadamente una extensión de terreno de 2 hectáreas (20 000 m²) por MW eléctrico instalado para una planta sin almacenamiento térmico, y entre 3 a 4 hectáreas para plantas que cuentan con un sistema de almacenamiento térmico de la energía captada basado en sales inorgánicas fundidas.

3.5.1.1. RECEPTOR CILINDRO PARABÓLICO

Para poder concentrar la energía solar es necesario el uso de unos espejos que son los encargados de reflejar la energía en el tubo absorbente. De esta forma se consigue obtener toda la radiación distribuida en un determinado punto. Para el caso de los colectores cilindro parabólicos este punto se convierte en una línea que recorre todo el colector a lo largo de su línea focal.

Figura 3. 8 - Colector Cilindro Parabólico Fuente: https://www.sbp.de/en/project/ultimate-trough-duba/

El proceso de fabricación del espejo consta en cortar y bordear los cristales para que no se sufra ninguna lesión en su manipulación. Después, se procede con el doblado para garantizar la precisión y calidad óptima. Este proceso de doblado es de gran importancia, debido a que influye de manera considerable en el factor de interceptación, dándole mayor rendimiento óptico al colector.

3.5.1.2. TUBO ABSORBENTE

Este componente es el encargado de transmitir al fluido toda la energía solar concentrada en el colector para posteriormente convertirla en energía eléctrica. Es uno de los componentes más importantes del colector, debido a que el rendimiento global del colector está ligado a sus características.

El tubo receptor se compone de un tubo metálico y una carcasa de vidrio concéntrica al tubo. El fluido caloportador circula dentro del tubo metálico. El tubo metálico está recubierto por un material selectivo con elevado coeficiente de absorción y baja emisividad, aprovechando así la energía procedente del sol.

Figura 3. 9 - Esquema de un Tubo Absorbente

Fuente: Handbook of Energy and Renewable Energy

3.5.1.3. CIMENTACIÓN Y ESTRUCTURA

Los colectores se fijan al suelo por medio de tornillos. Para ello es indispensable tener una buena cimentación que aguante los esfuerzos y cargas que en los colectores se generan.

La estructura del colector se encarga de dar rigidez a todo el conjunto, así como servir de apoyo para los reflectores parabólicos y permitir su movimiento a lo largo del eje longitudinal del colector. Se trata de un conjunto de componentes metálicos unidos entre sí.

3.5.2. CICLO DE POTENCIA

El bloque de potencia se sitúa en el centro del emplazamiento de la central. Este bloque se compone de todos los sistemas y elementos necesarios para convertir la energía térmica procedente del fluido calorífico en energía eléctrica.

Las sales procedentes del campo solar y el sistema de almacenamiento térmico pasan a través de un intercambiador de calor donde transfieren su energía al agua que circula por el ciclo de potencia, obteniéndose vapor sobrecalentado listo para expandirse en la turbina.

Posteriormente el vapor se expande hasta la presión del condensador, en el condensador se realiza un intercambio de calor por el que circula por un lado la mezcla de líquido y vapor resultante de la expansión en la turbina y, por otro lado, el agua proveniente del sistema de refrigeración.

El agua que es condensada, se impulsada por una bomba hacia el generador de vapor, donde se vuelve a iniciar el ciclo.

3.5.2.1. GENERADOR DE VAPOR

El generador de vapor es un intercambiador de calor que transfiere la energía de la sal hacia el agua, consiguiendo la evaporación de ésta para su utilización en la turbina de vapor.

3.5.2.2. TURBINA DE VAPOR

La turbina de vapor es la encargada de producir el trabajo necesario para mover el generador eléctrico. La turbina expande la corriente procedente del generador de vapor y convierte dicha energía térmica en energía mecánica en un eje.

3.5.2.3. CONDENSADOR

La mezcla de líquido y vapor resultante de la extracción de la turbina se dirige directamente hacia el condensador. En este elemento se extrae el calor de vaporización de la mezcla y se obtiene agua líquida. Este intercambio de energía se realiza típicamente con ayuda del agua procedente del sistema de refrigeración.

3.5.2.4. BOMBA

La bomba servirá para elevar la presión que circula a través de ella. Está ubicada a la salida del condensador, la cual elevará la presión de condensación hasta la presión de entrada del generador.

3.5.3. GENERADOR SÍNCRONO

La máquina síncrona es un convertidor de energía basado en los fenómenos de inducción electromagnética. Una máquina síncrona, ya sea generador o motor, opera a velocidad síncrona, es decir, a la velocidad a la que gira el campo magnético creado por las bobinas del campo.

Más del 90% de la energía eléctrica producida es gracias a los generadores síncronos. El alternador requiere una excitatriz rotativa o estática para su excitación, con el correspondiente regulador de tensión, debido a que sus bobinas excitatrices se alimentan con c.c. De la misma forma este funcionamiento ha de disponer del correspondiente regulador de velocidad, el cuál actúa sobre la turbina a efectos de mantener la frecuencia

constante. El generador síncrono permite acoplarse a la red, por esta razón necesitamos disponer de elementos de sincronismo, bien sea manuales o automáticos adecuados. Por otra parte, tiene la ventaja de que una vez acoplada a la red, permite trabajar con un factor de potencia variable actuando sobre el sistema de excitación.

CAPÍTULO IV

4. DISEÑO DE LA MINI-CENTRAL SOLAR TÉRMICA

4.1. DESCRIPCIÓN DEL LUGAR

4.1.1. UBICACIÓN

El emplazamiento que se ha seleccionado es la zona denominada Irrigación Yuramayo, se encuentra situada en el distrito de Vítor en la provincia de Arequipa. Este tipo de instalaciones necesitan tener una radiación anual alta, también es necesario tener en cuenta la manera de obtener el agua suficiente para operar la planta.

Figura 4. 1 - Irrigación Yuramayo - Vítor Fuente: Google Earth

4.1.2. DATOS METEREOLÓGICOS

Los datos que van a ser necesarios son los valores de radiación solar por meses.

Figura 4. 2 - Radiación Solar Arequipa (Enero - Abril)

Fuente: Atlas de Energía Solar del Perú

JULIO

40

Figura 4. 3 - Radiación Solar Arequipa (Mayo - Agosto) Fuente: Atlas de Energía Solar del Perú

SETIEMBRE

OCTUBRE

Figura 4. 4 - Radiación Solar (Setiembre - Diciembre)

Fuente: Atlas de Energía Solar del Perú

4.2. ANÁLISIS DE LOS COMPONENTES DEL CAMPO SOLAR

Después de que se haya escogido el lugar donde se instalará la minicentral solar térmica, se tiene que decidir cuáles son los componentes del sistema que se van a utilizar y determinar sus características y propiedades. Principalmente son dos los componentes necesarios a determinar, estos son: el colector solar y el tubo absorbente.

Figura 4. 5 - Componentes del Campo Solar Fuente: Handbook of Energy Effiency and Renewable Energy

4.2.1. COLECTOR SOLAR

Actualmente en el mercado existen diversos tipos de colectores. Cada uno de ellos presentan similares características, siendo el rendimiento óptico y el factor de interceptación en su mayoría iguales.

El colector Eurotrough utiliza un diseño de armazón soporte, consiste básicamente en un armazón rectangular con brazos tipo soporte, así consigue combinar una mayor resistencia a la torsión con una menor cantidad de acero utilizado en su fabricación.

La empresa Solargenix Energy ha desarrollado un colector cilindro parabólico, cuya estructura está hecha de aluminio extruido y utiliza una estructura de diseño espacial.

En la tabla 4.1 se muestran las principales características del colector Eurotrough y del Solargenix.

	Solargenix	Eurotrough
Estructura	Estructura espacial	Estructura tipo
	de aluminio extruido	armazón soporte
Apertura (m)	5	5.77
Distancia focal media (m)	1.8	1.71
Longitud de un colector (m)	100	99.5
Área de espejo por colector (m²)	470	545
Diámetro del receptor (m)	0.07	0.07
Concentración geométrica	71:1	82:1
Mecanismo de accionamiento	Hidráulico	Hidráulico
Peso (kg/m2)	22	19
Rendimiento óptico	77	80

Tabla 4. 1 - Comparación entre colectores Solargenix yEurotrough

Fuente: Elaboración propia

El colector que se va a elegir para el diseño de la mini-central solar térmica es el Eurotrough SKAL-ET 100, debido a su elevada rigidez y a su alto rendimiento óptico.

4.2.2. TUBO ABSORBENTE

De igual manera que el colector solar, existen varias opciones de tubos absorbentes dependiendo del fabricante. Las características son muy similares, siendo Siemens AG y Schott Solar los más empleados para aplicaciones con aceite térmico.

	SCHOTT PTR 70	SIEMENS UVAC 2010
Longitud	4060 mm	4060 mm
Diámetro exterior tubo metálico	70 mm	70 mm
Material	Acero inoxidable	Acero inoxidable
Recubrimiento selectivo	Cermet	Cermet
Diámetro exterior tubo vidrio	125 mm	115
Tipo de vidrio	Vidrio borosilicatado	Vidrio borosilicatado
Transmisividad	≥96%	≥96.5%
Tratamiento antirreflexivo	En ambas caras del	En ambas caras del
	tubo de vidrio	tubo de vidrio
Absortividad	<u>≥</u> 95%	≥96%
Emisividad	≤10% a 400°C	<u>∢</u> 9% a 400°C
Superficie útil	95%	96%

Tabla 4. 2 - Comparación entre tubos absorbentes Schott y Siemens

Fuente: Elaboración propia

Como se puede apreciar en la tabla 4.2, las diferencias que existen son mínimas, tanto a nivel de diseño como a nivel de rendimiento térmico.

El tubo absorbente que se va a elegir para el diseño de la mini-central solar térmica es el Schott PTR 70.

4.2.3. FLUIDO CALORÍFICO A EMPLEAR

El tipo de fluido de trabajo que se utiliza en los CCP depende de la temperatura que se desee alcanzar. Si las temperaturas que se desean son moderadas (< 175°C), la utilización de agua desmineralizada como fluido de trabajo no conlleva grandes problemas, ya que la presión de trabajo no es excesiva. Para temperaturas que varían entre los 175°C a 400°C, el aceite sintético es el fluido más adecuado. La explicación de este hecho conlleva, a que para temperaturas altas las tuberías estarían sometidas a elevadas presiones si el fluido de trabajo fuese el agua, porque para evitar que se evapore el agua es necesario mantenerla en todo momento a una presión superior a la de saturación correspondiente a la temperatura máxima que alcance el agua en los captadores solares. Esto significa que, si desea tener

agua caliente a 315°C a la salida de los captadores, la presión en el circuito tendrá que ser superior a 10 MPa. En cambio, puesto que la presión de vapor del aceite para estas temperaturas es mucho menor que la del agua, se puede calentar aceite a 315°C sin tener que mantener el circuito a más de 1 MPa. Trabajar a menores presiones posibilita usar materiales más económicos para las tuberías y simplifica la instalación y sus medidas de seguridad.

Existen diversos tipos de aceite y la elección de uno u otro se hace en función de la temperatura máxima de trabajo que se desea. Para una temperatura máxima de 300°C se suele elegir el Santotherm 55 (conocido también como Therminol 55), que es un aceite con buenas propiedades térmicas y su precio es bastante asequible. Para temperaturas de hasta 400°C, se suele usar el Monsato VP-1 (Therminol VP-1), que es un aceite sintético que puede trabajar bien a 395°C, aunque tiene el problema de que su punto de congelación es de 12°C, lo que obliga a mantener todo el circuito de aceite de forma permanente a una temperatura superior a este valor. Para ello se suele utilizar un traceado eléctrico de las tuberías del circuito de aceite, o una caldera auxiliar que mantiene el circuito de aceite por encima de los 12°C durante la noche y en días nublados con temperatura baja.

Los gráficos siguientes muestran las propiedades físicas del aceite Therminol 55.

UNIVERSIDAD Católica De Santa María

46

Gráfico 4.1 - Variación de la densidad con la temperatura

Gráfico 4. 2 - Variación de la viscosidad con la temperatura Fuente: Elaboración propia

Gráfico 4.3 - Variación del calor específico con la temperatura

Fuente: Elaboración propia

Gráfico 4. 4 - Variación de la conductividad térmica con la temperatura

Fuente: Elaboración propia

A las temperaturas de trabajo a las que vamos a operar con los colectores cilindro parabólicos, el fluido de trabajo que se usará, será el aceite Santotherm 55 (Therminol 55).

4.3. ANÁLISIS DE LA GEOMETRÍA SOLAR

Los datos necesarios para el cálculo del campo solar se detallan a continuación:

4.3.1. FACTOR DE CONCENTRACIÓN

El factor de concentración C, es la relación del área de apertura del colector y el área del tubo absorbedor:

$$C = \frac{A_{colector}}{A_{tubo}} = \frac{l x l_a}{\pi x d_o x l} = \frac{l_a}{\pi x d_o}$$
(4.1)
$$C = \frac{5.77}{\pi x 0.07} = 26.24$$

Figura 4.6 - Factor de Concentración de un CCP

El valor obtenido del factor de concentración se encuentra en el rango para este tipo de colectores de alta concentración que se sitúan entre 15 y 40.

4.3.2. DECLINACIÓN

El plano de revolución de la Tierra alrededor del Sol se denomina plano eclíptico. La Tierra gira sobre sí misma alrededor de un eje denominado eje polar, el cual se encuentra inclinado aproximadamente 23.5° de la normal del plano eclíptico. El ángulo entre el eje polar y la normal al plano eclíptico permanece invariable. El ángulo que forman el plano ecuatorial y la línea que une los centros del sol y de la tierra se denomina declinación solar δ . El valor de la declinación es cero en los equinoccios de primavera y de otoño y tiene un valor aproximado de +23.5° en el solsticio de verano y cerca de -23.5° en el solsticio de invierno.

Figura 4. 7 - Esfera celeste mostrando el ángulo de declinación solar (labal 1983)

Fuente: Atlas Climático de irradiación solar a partir de imágenes del Satélite

NOAA

Para determinar la declinación solar se presenta una fórmula simple comúnmente usada para determinar la declinación (en grados), como es la fórmula de Perrin de Brichambaut (1975).

$$\delta = \sin^{-1} \left\{ 0.4 \sin \frac{360}{365} (d_n - 82) \right\}$$
(4.2)

El criterio más usado para seleccionar la radiación de diseño es medirla el día 21 de Junio a las 12:00 horas, esto para el hemisferio Norte. Para el hemisferio Sur, utilizando el criterio de que en el solsticio de invierno el valor de la radiación incidente será la máxima, y por lo tanto la radiación será medida el día 21 de Diciembre a las 12:00 horas.

A continuación, con la fecha determinada para el diseño de la mini-central solar térmica, se procederá a determinar el valor del ángulo de declinación, para ello usaremos la ecuación (4.2):

$$\delta = \sin^{-1} \left\{ 0.4 \sin \left[\frac{360}{365} (355 - 82) \right] \right\} = -23.58^{\circ}$$

4.3.3. ÁNGULO HORARIO

El ángulo horario ω para una superficie horizontal se expresa mediante la siguiente ecuación:

$$\omega(0) = (TO - 12 + ET - AO)x15 - (LL - LH)$$
(4.3)

Donde:

- *ET* Ecuación del tiempo, expresado en horas
- *A0* Adelanto de la hora oficial, expresado en horas
- LL Longitud del lugar, expresada en grados
- *LH* Longitud del huso horario de referencia, expresado en grados

Para el cálculo del ángulo horario se necesitan determinar algunos parámetros:

• Ángulo diario:

El ángulo diario (Γ) es un parámetro relativo a la posición de la Tierra en el plano de la elíptica expresado en radianes. Su expresión viene dada por la siguiente fórmula:

$$\Gamma = \frac{360 x (d_n - 1)}{365}$$

(4.4)

51

 $\Gamma = \frac{360 \ x \ (355 - 1)}{365} = 349.15 \ rad$

• Ecuación del tiempo:

El tiempo solar verdadero está basado en la rotación de la Tierra sobre su eje polar y el movimiento de traslación alrededor del Sol. Un día solar es el intervalo de tiempo en el que el Sol completa un ciclo alrededor de un observador estacionario en la Tierra. La tierra gira alrededor del Sol verificándose la ley de las áreas, lo que implica que la velocidad de la Tierra varía a lo largo del año, en consecuencia, el día solar no es uniforme, siendo imposible adoptarlo como unidad de tiempo. Para superar esta dificultad se acuerda tomar una esfera terrestre ficticia que posee un movimiento de rotación uniforme alrededor del Sol, de manera tal que describe una vuelta completa exactamente en el mismo tiempo que emplea la Tierra en describir un giro alrededor del Sol, dando origen al tiempo solar medio.

La diferencia que existe entre el tiempo solar verdadero y el tiempo solar medio es lo que es denomina ecuación del tiempo, la cual varía de un lugar a otro a lo largo del año. Para la determinación de la ecuación del tiempo, Spencer (1971) propone la siguiente fórmula para calcular la ecuación del tiempo (en horas):

 $ET = \frac{229.18}{60} (0.000075 + 0.001868 \cos \Gamma - 0.014615 \cos 2\Gamma$ (4.5)

 $-0.04089 \sin 2\Gamma - 0.032077 \sin \Gamma$

ET = 0.0362387 horas

Longitud del lugar

La longitud del lugar es negativa hacia el Oeste y positiva hacia el Este. En el caso del Perú la longitud del lugar es negativa.

La longitud en la zona donde se quiere implementar la mini-central solar térmica es 71°56'24", por lo tanto:

$$LL = -71 + \frac{56}{60} = -71.94^{\circ}$$

Figura 4.8 - Mapa Horario Mundial Fuente: https://www.timeanddate.com/time/map/

• Longitud del huso horario

La esfera celeste se divide en 24 husos horarios de donde $360/24 = 15^{\circ}$, esto quiere decir que en una hora, la longitud es 15°. Para el Perú la longitud del huso horario es:

 $LH = -5 \ x \ \frac{360}{24} = -75^{\circ}$

Ahora con todos los datos obtenidos, los reemplazamos en la ecuación (4.3):

$$\omega(0) = (TO - 12 + ET - AO)x15 - (LL - LH)$$

$$\omega(0) = (12 - 12 + 0.0362387 - 0)x15 - (-71.94 - -75)$$

$$\omega(12) = -2.52^{\circ}$$

4.3.4. ÁNGULO DE INCIDENCIA

El ángulo de incidencia es un factor muy importante, debido a que la fracción de radiación solar que es útil para el colector, es directamente proporcional al coseno de este ángulo.

El ángulo de incidencia de un colector con su eje de giro horizontal viene definido por la siguiente ecuación:

$$\varphi = \cos^{-1} \left(\cos \delta \sqrt{(\cos \phi \cos \omega + \tan \delta \sin \phi)^2 + \sin^2 \omega} \right)$$
(4.6)

El ángulo ϕ representa la latitud del lugar, para el caso donde se implementará la mini-central solar térmica, la latitud es 16°28'12". Convirtiendo este valor a grados sería 16.47°, ahora reemplazamos los valores obtenidos en la ecuación (4.6):

$$\varphi = \cos^{-1} \left(\cos -23.58 \sqrt{(\cos 16.47 \cos -2.52 + \tan -23.58 \sin 16.47)^2 + \sin^2 -2.52} \right)$$
$$\varphi = 40.03^\circ$$

El modificador del ángulo de incidencia, el cual depende directamente del ángulo de incidencia, usualmente está dado por una ecuación polinominal:

$$K(\varphi) = 1 - 2.2307E - 4 x \varphi - 1.1E - 4 x \varphi^{2} + 3.18596E - 6 x \varphi^{3}$$
(4.7)
- 4.85509E - 8 x \varphi^{4}

 $K(\phi) = 0.8945$

4.4. DIMENSIONAMIENTO DEL CAMPO SOLAR

El campo solar de la mini-central solar térmica estará formada por CCP SKAL-ET-100 de la marca Eurotrough, los tubos absorbedores serán los PTR 70 de la marca Schott.

El fluido caloportador (HTF) que se va usar es el Therminol 55, debido a sus buenas propiedades dentro del rango de temperaturas a las que se va a trabajar en la mini-central solar térmica y a su bajo precio en el mercado.

4.4.1. PARÁMETROS INICIALES

El parámetro de partida para el diseño de la mini-central es el de la potencia eléctrica, el cual se ha asignado un valor de 200 KVA, el rendimiento del generador eléctrico según información disponible, la asumiremos en 98%, y tomaremos un valor de 38% para el rendimiento máximo del ciclo Rankine.

 $\dot{W}_{eje} = \frac{200}{0.98} = 204.08 \, KW$

Entonces, la potencia térmica que va a suministrar el campo solar será:

 $\dot{Q}_{t\acute{e}rmica} = rac{204.08}{0.38} = 537.05 \, KWt$

Las temperaturas con las que va a trabajar el aceite a la entrada y salida del campo solar se han fijado con un salto térmico de 100°C, entonces estas serán:

 $T_{ent} = 200^{\circ}C$

 $T_{sal} = 300^{\circ}C$

Las coordenadas geográficas, y los valores del ángulo de incidencia y del modificador del ángulo de incidencia son:

Latitud: 16°28′12" S

Longitud: 71°56′24" W

Ángulo de incidencia φ : 40.03°

Modificador del ángulo de incidencia $K(\varphi)$: 0.8945

Si tomamos en cuenta el valor de radiación solar máxima de 724 W/m² en la central solar Repartición ubicada en la joya, asignaremos un valor de diseño de 700 W/m² para el cálculo de la mini-central solar térmica.

4.4.2. CÁLCULO DEL FLUJO MÁSICO POR COLECTOR

Por definición el flujo másico es la masa de fluido que circula en una sección por unidad de tiempo, y se calcular con la siguiente ecuación:

$$\dot{m} = \rho \, v \, A_{tubo} \tag{4.8}$$

El flujo en un tubo redondo depende de cuatro variables: la densidad del fluido ρ , su viscosidad dinámica μ , el diámetro de la tubería d_i , y la velocidad promedio del flujo v. La ecuación siguiente muestra la definición básica del número de Reynolds:

$$Re = \frac{\rho \ v \ d_i}{\mu} \tag{4.9}$$

56

El caudal de aceite para el diseño requiere mantener un valor de número de Reynolds que asegure una buena transferencia de calor entre el tubo absorbente y el HTF. Adoptamos un valor de diseño de 2x10⁵ para el caso más desfavorable (invierno).

Considerando que el flujo de HTF en el campo de colectores tiene una caída considerable en invierno, y el dimensionamiento debe realizarse para la carga máxima en verano, utilizaremos un valor 2 veces mayor para que haya una transferencia óptima de calor en invierno.

Entonces, el número de Reynolds que se va a tomar será:

$$Re_{D} = 4x10^{5}$$

Para poder determinar los parámetros del aceite en el diseño del campo solar, es necesario trabajar con una temperatura media, la cual será el promedio de las temperaturas de entrada y salida del campo solar:

$$T_m = \frac{200 + 300}{2} = 250^{\circ}C$$

Considerando la temperatura media, podemos calcular la densidad y la viscosidad dinámica del aceite Therminol 55 en tablas.

• Densidad

$$\rho = 711 \, kg/m^3$$

• Viscosidad Dinámica

$$\mu = 4.88 \ x \ 10^{-4} \ \frac{kg}{m.s}$$

Ahora despejando de la ecuación (4.9), para calcular la velocidad del HFT tenemos:

$$v = \frac{Re \ \mu}{\rho \ d_i}$$

 $v = \frac{4E5 \times 4.88E - 4}{711 \times 0.065}$ $v = 4.22 \ m/s$

Conociendo todos los parámetros podemos determinar el flujo másico con la ecuación (4.8):

$$\dot{m} = 711x \ 4.22 \ x \ \frac{\pi}{4} \ 0.065^2$$

 $\dot{m} = 9.96 \, kg/s$

4.4.3. CÁLCULO DEL INCREMENTO DE TEMPERATURA DEL FLUIDO POR COLECTOR

El coeficiente de pérdida de calor depende de la temperatura del tubo absorbente y se encuentra experimentalmente realizando pruebas de pérdidas de calor cuando los colectores cilindro parabólicos operan a diversas temperaturas dentro del margen de operación. La variación del coeficiente de pérdidas térmicas versus la temperatura del tubo absorbente se expresa como un polinomio de segundo orden, con coeficientes *a*, *b*, y *c*, y se expresa mediante la siguiente ecuación:

$$U_L = a + b (T_m - T_{amb}) + c (T_m - T_{amb})^2 \left(\frac{W}{m^2 \circ C}\right)$$
(4.10)

A continuación, se dan los valores de los coeficientes *a*, *b*, y *c*, que han sido calculados experimentalmente por Ajona (1999), y se detallan en la tabla (4.3):

$T_{abs}/(^{\circ}C)$	T _{abs} /(°C) a		с
<200	0.687257	0.001941	0.000026
>200; <300	1.433242	-0.00566	0.000046
>300	2.895474	-0.0164	0.000065

El valor de los coeficientes *a*, *b*, y *c*, para la temperatura de operación de la mini-central solar térmica, que está en el rango de 200°C a 300°C, serán:

a = 1.433242

b = -0.00566

c = 0.000046

Reemplazando los valores de los coeficientes en la ecuación (4.10), tenemos:

 $U_L = 1.433242 - 0.00566 (250 - 19.4) + 0.000046 (250 - 19.4)^2$

$$U_L = 2.574 \ \left(\frac{W}{m^2 \circ C}\right)$$

Las pérdidas térmicas totales en un CCP, son debido a las pérdidas de calor radiantes del tubo absorbente hacia el ambiente. Aunque esta pérdida de calor está gobernada por mecanismos bien conocidos de radiación, conducción y convección, es necesario calcularlos usando los coeficientes de pérdidas térmicas, de acuerdo a:

$$\dot{Q}_{colector-ambiente} = U_L x \pi x d_o x l x (T_m - T_{amb}) \quad (W)$$
(4.11)

$$\dot{Q}_{colector-ambiente} = 2.574 \ x \ \pi \ x \ 0.07 \ x \ 99.5 \ x \ (250 - 19.4)$$

$\dot{Q}_{colector-ambiente} = 12987.90 W$

La eficiencia global, incluye tres tipos de pérdidas que ocurren dentro de un CCP, como son: ópticas, geométricas y calor. Estas pérdidas pueden ser calculadas en función de la eficiencia óptica pico, el modificador de ángulo de incidencia y la eficiencia térmica usando la ecuación (4.12):

 $\eta_{global} = \eta_{opt} \operatorname{K}(\varphi) \eta_{th}$

(4.12)

60

La eficiencia global también puede ser calculada como la proporción entre la eficiencia térmica de salida neta entregada por el colector, y el flujo de energía solar incidente sobre el plano de apertura del colector:

$$\eta_{global} = \frac{\dot{Q}_{colector-fluido}}{\dot{Q}_{sol-colector}}$$
(4.13)

$$\dot{Q}_{sol-colector} = A_c E_d \cos\varphi \tag{4.14}$$

$$\dot{Q}_{colector-fluido} = \dot{m} \left(h_{sal} - h_{ent} \right) \tag{4.15}$$

Donde:

- A_c Área de superficie del colector
- *E_d* Radiación solar directa
- φ Ángulo de incidencia
- *m* Flujo másico a través del tubo absorbente del colector

CATO

De la ecuación (4.13) despejamos para obtener el valor de $\dot{Q}_{colector-fluido}$, en función de las ecuaciones (4.12) y (4.14). Al valor de las pérdidas de colector hacia el fluido se le multiplica por un factor de ensuciamiento, que toma un valor alrededor de 0.97, entonces obtenemos así la ecuación (4.16).

$$\dot{Q}_{colector-fluido} = A_c E_d \cos \varphi \ \eta_{opt} \ K(\varphi) \ \eta_{th} F_e$$
(4.16)

UNIVERSIDAD

TÓL ICA

61

de santa maría

Desde un punto de vista práctico, la ecuación (4.16) puede ser escrita en función del $\dot{Q}_{colector-ambiente}$, que es usada en vez de la eficiencia térmica:

$$\dot{Q}_{colector-fluido} = A_c E_d \cos \varphi \ \eta_{opt} \ K(\varphi) F_e - \dot{Q}_{colector-ambiente}$$
(4.17)

La eficiencia óptica usualmente está en el rango de 0.70 – 0.76, y su variación se debe a una buena limpieza y calidad de los CCP.

Resolviendo la ecuación (4.17) con los valores obtenidos tenemos:

 $\dot{Q}_{colector-fluido} = 545 x 700 x \cos(40.03) x 0.7 x 0.8945 x 0.97 - 12987.90$

 $\dot{Q}_{colector-fluido} = 164434 W$

El calor específico del aceite usado está dado por la siguiente ecuación:

$$cp = 1.83 + 0.00375 T \tag{4.18}$$

UNIVERSIDAD

de santa maría

CATÓLICA

62

El incremento de la entalpía se expresa en función del calor específico del aceite, integrando la ecuación (4.18).

$$\Delta h = \int_{200}^{T_0} 1.83dt + \int_{200}^{T_0} 0.00375 \, Tdt$$
$$\Delta h = 1.83 \, T |_{200}^{T_0} + \frac{0.00375}{2} \, T^2 |_{200}^{T_0}$$
$$\Delta h = 1.83 \, (T_0 - 200) + 0.001875 \, (T_0^2 - 200^2)$$

$$\Delta h = 1.83 \, T_o + 0.001875 \, T_o^2 - 441 \tag{4.19}$$

Reemplazando la ecuación (4.19) en la ecuación (4.15) obtenemos T_o :

$$Q_{colector-fluido} = \dot{m} \Delta h$$

$$164.434 \ KW = 9.96 \frac{kg}{s} \left(1.83 \ T_o + 0.001875 \ T_o^2 - 441 \right)$$

$$T_o = 206.4 \ ^{\circ}C$$

El incremento de temperatura en un colector es:

$$206.4 - 200 = 6.4 \,^{\circ}C$$

4.4.4. CÁLCULO DEL NÚMERO DE COLECTORES

• Número de colectores por fila

Para el diseño de la mini-central solar térmica, se pretende tener un salto de 100 °C en cada fila de colectores, y en cada colector se alcanza una variación de 6.4 °C, entonces el número de colectores por fila es:

$$N^{\circ} filas = \frac{100}{6.4} = 15.6 = 15 \ colectores$$

o Número de lazos

Para determinar el número de lazos del campo solar, primero hay que multiplicar el número de colectores por el flujo de $\dot{Q}_{colector-fluido}$ para obtener la potencia térmica útil.

$$15 x 164.434 = 2466.51 KW$$

$$N^{\circ} \, lazos = \frac{537.05}{2466.51} = 0.2177 = 1 \, lazo$$

Figura 4. 9 - Esquema del Ciclo de Potencia

4.5. ANÁLISIS DEL CICLO DE POTENCIA

El ciclo de potencia de la mini-central solar térmica va a depender principalmente de la turbina que se seleccione. La turbina que se va a escoger es una turbina de vapor diseñada para trabajar en un rango de potencias de 75 – 300 kW de la marca Siemens. Esta turbina presenta un diseño simple y es extremadamente compacta, con tiempos de puesta en marcha muy cortos y tiene un alto grado de fiabilidad operativa.

Turbina Siemens SST-040				
Potencia de Salida 75 - 300 kW				
Presión de Entrada	2 - 40 bar (a)			
Temperatura de Entrada	Vapor sobrecalentado hasta 400°C			
Presión de Extracción	7 bar máx. (a)			
Presión de Condensación	> 0.1 bar (a)			
Dimensiones	1.5m x 2.5m x 2m			
Peso	4500 kg			

Tabla 4. 4 - Características turbina Siemens SST-040

Fuente: Siemens

En la figura 4.10, se puede apreciar el esquema del ciclo de potencia con sus elementos principales: turbina de vapor, condensador, bomba, y el intercambiador de calor.

Figura 4.10 - Esquema del Ciclo de Potencia

4.5.1. PARÁMETROS INICIALES

Los parámetros iniciales para el diseño del ciclo de potencia de la minicentral solar térmica, son la presión y temperatura de entrada a la turbina, la eficiencia adiabática de la turbina también es otro parámetro importante para realizar los cálculos, los valores asignados se detallan a continuación:

Presión entrada: 5 bar

Temperatura entrada: 290°C

 $\eta_{ad} = 88\%$

La presión de condensación a la que se va a trabajar es: Presión condensación: 8 kPa

4.5.2. ANÁLISIS TERMODINÁMICO

El vapor que entrará a la turbina es vapor sobrecalentado, convirtiendo la energía potencial en energía cinética que producirá la rotación del eje, generando un trabajo que es convertido posteriormente en energía eléctrica. El análisis termodinámico del ciclo de potencia se detalla en la tabla 4.5.

	P (bar)	T (°C)	h (kJ/kg)	x	Estado	Fluido
1	5	290	3044		V.S.	Vapor
2	0.08	41.5	2410	0.9308	Mezcla	Condensado
3	0.08	41.5	173.85	0	L. S.	Agua
4	5	42.4	178.08		L. <i>C</i> .	Agua
5		200	470.1		Líquido	Therminol 55
6		300	742.1		Líquido	Therminol 55

Tabla 4.5 - Análisis Termodinámico del Ciclo de Potencia

Fuente: Elaboración propia

4.5.3. CÁLCULO DEL FLUJO DE VAPOR

El flujo de vapor \dot{m}_v necesario para operar el ciclo de potencia de la minicentral solar térmica, se va a dar de acuerdo a la siguiente ecuación:

$$\frac{\dot{W}_{bornes}}{\eta_{g.e} \ \eta_{mec}} = \dot{m}_{v} \ (h_1 - h_2) \tag{4.20}$$

Los valores de las eficiencias del generador eléctrico y de la turbina serán asumidas con valores de 0.98 y 0.91 respectivamente. Resolviendo la ecuación (4.20) para determinar el flujo de vapor necesario en el ciclo de potencia, tenemos:

$$\frac{200}{0.98 x \, 0.91} = \dot{m}_v \ (3044 - 2410)$$
$$\dot{m}_v = 0.3537 \, kg/s$$

En el condensador se transfiere calor del vapor al agua de enfriamiento que circula en flujo separado, mediante la siguiente ecuación:

$$\dot{Q}_B = \dot{m}_v \left(h_2 - h_3 \right) \tag{4.21}$$

66

 $\dot{Q}_B = 0.3537 (2410 - 173.85)$ $\dot{Q}_B = 790.93 \, kW$

Adicionalmente se puede calcular el flujo de agua de refrigeración que necesita el condensador de vapor para poder operar adecuadamente.

 $\dot{Q}_B = \dot{m}_R \ cp \ \Delta T$

(4.22)

67

Donde:

\dot{Q}_B	Energía transferida del fluido de trabajo al agua de refrigeración
\dot{m}_R	Flujo de refrigeración que necesita el condensador
ср	Calor específico del agua
ΔT	Variación de temperaturas que circulan por el condensador

Despejando de la ecuación (4.22), para poder determinar el flujo de refrigeración, tenemos:

 $\dot{m}_R = rac{790.93}{4.2 \ x \ 10}$ $\dot{m}_R = 18.83 \ kg/s$

La potencia de la bomba de refrigeración necesaria para bombear agua del río hacia el condensador será determinada por la ecuación (4.23):

$$P_B = \frac{\gamma \ Q \ H_B}{\eta} \tag{4.23}$$

UNIVERSIDAD Católica De Santa María

68

Donde:

- *P_B* Potencia de bombeo
- γ Peso específico del fluido
- Q Caudal de bombeo
- *H_B* Altura de bombeo
- η Eficiencia de la bomba

Asumiendo una eficiencia de la bomba de 0.92, se resuelve la ecuación (4.23) para poder determinar la potencia de la bomba de refrigeración:

$$P_B = \frac{9800 \ x \ 0.01883 \ x \ 5}{0.92}$$
$$P_B = 1 \ kW$$

La figura (4.12) muestra el esquema de completo de la mini-central solar térmica.

Figura 4. 12 - Esquema de la Mini-Central Solar Térmica Fuente: Elaboración propia

4.6. ANÁLISIS DEL GENERADOR SÍNCRONO

El generador síncrono que se va a utilizar en la mini-central solar térmica, es un alternador síncrono trifásico de eje horizontal, de rotor cilíndrico que genera a 380V y 220V y que estará acoplada a la turbina y será el encargado de convertir la energía mecánica en energía eléctrica. Estará ventilado por aire en un circuito abierto con expulsión de aire caliente al exterior.

El alternador funcionará con el punto neutro a tierra a través de un transformador de potencia. La configuración que se ha escogido para el transformador es Dyn5, debido a que es la más común para este tipo de instalaciones.

A continuación, en la tabla 4.6, se detallan las principales características del alternador que se ha escogido para el presente proyecto.

Modelo	G2R 250 LB/4
Potencia Continuo 125ºC- kVA	210.00
Potencia Emergencia 150ºC - kVA	230.00
Reac. Subtrans. Xd - Cont	8.90
Rend. 4/4 Cos fi 0.8 %	92.00
RAT BASLER	AVC 63-7 1A
Peso Neto Kgs.	518.00
Peso Bruto Kgs.	0.00
Datos	🖄 Características Técnicas
Dim. de embalaje (mm)	1200x750x1080
Categoría	Alternadores 4 Polos Sincrónicos 380Y/220D 60hz.

Tabla 4. 6 - Análisis Termodinámico del Ciclo de Potencia

Fuente: CRAMACO

CAPÍTULO V

5. SIMULACIÓN DE LA MINI-CENTRAL SOLAR TÉRMICA

5.1. SIMULACIÓN DEL MODELO EN SOLIDWORKS

La simulación del proyecto se va a realizar con el programa de diseño denominado Solidworks. Específicamente se utilizará el complemento FlowSimulation que va a permitir el análisis de flujo de un líquido o gas y fenómenos de transferencia de calor.

5.1.1. DESARROLLO DEL MODELO EN 3D

Como ya se ha mencionado, el tubo absorbente que se ha escogido es el Schott PTR 70 debido a que es uno de los más utilizados en las centrales CCP en el mundo.

El diseño del tubo absorbente consiste en un ensamblaje de 5 piezas diferentes, según las dimensiones que se han obtenido a partir de fichas técnicas del fabricante. La tabla 5.1 especifica la pieza con su tipo de material.

NOMBRE DE LA PIEZA	CANTIDAD	MATERIAL	
Unión del fuelle con el tubo metálico	2	AISI 304	
Unión del fuelle con la cubierta exterior	2	AISI 304	
Fuelle metálico	2	AISI 304	
Tubo metálico	1	AISI 321	
Cubierta exterior	1	Vidrio	

Tabla 5. 1 - Piezas del tubo absorbente

A continuación, en la figura 5.1 se muestra el detalle en corte de los elementos del tubo absorbente.

Figura 5. 1 - Vista en sección de los elementos del tubo absorbente

Fuente: Elaboración propia

5.1.2. DEFINICIÓN DEL PROBLEMA

Al iniciar un proyecto en FlowSimulation se tiene que agregar una serie de datos antes de establecer las condiciones de contorno del sistema.

5.1.2.1. SELECCIÓN DE ACEITES

Como ya se mencionó en el capítulo anterior, la mejor opción para el HTF es el Therminol 55, debido a que tiene una alta densidad, baja viscosidad y es el aceite con mayor conductividad térmica dentro del rango de temperaturas a las que se va a operar.

5.1.2.2. MATERIALES SÓLIDOS

Las propiedades físicas de los materiales que se usan en el tubo absorbente son las descritas en la tabla 5.2.

MATERIAL	DENSIDAD (kø/m³)	CALOR ESPECÍFICO (kJ/k@-K)	COND. TÉRMICA (W/m-K)
AISI 304	8000	0.5004	16
AISI 321	7900	0.4401	14
VIDRIO	2457.6	0.8346	0.7498

Tabla 5. 2 - Propiedades de los materiales del tubo absorbente

Fuente: Elaboración propia

5.1.2.3. CONDICIONES DE CONTORNO

Las condiciones de contorno necesarias para la simulación en Solidworks FlowSimulation son el flujo másico, la presión de entrada del fluido y la temperatura de entrada del fluido y el calor que recibe el tubo interior metálico.

Figura 5. 2 - Parámetro del flujo másico

Figura 5.3 - Parámetros de presión de trabajo y temperatura

Figura 5. 4 - Parámetro de la fuente de calor

Fuente: Elaboración propia

5.1.2.4. MALLADO

El mallado es el método usado por el FlowSimulation de elementos finitos. El tamaño de cada malla define el grado de exactitud de los resultados.

El estudio se va a realizar con 5 tipos de mallas, que van desde el nivel 2 hasta el nivel 6.

Nivel 4

Nivel 5

Nivel 6

Figura 5. 5 - Diferentes niveles de mallado (Nivel 2 - Nivel 6)

Fuente: Elaboración propia

Como se puede apreciar en la figura 5.5, la densidad de las mallas aumenta conforme el nivel seleccionado de la malla sea mayor. La convergencia de valores se consigue con el nivel 5.

N° MALLA	TEMPERATURA DE SALIDA (K)	VARIACIÓN DE TEMPERATURA (K)				
Nivel 2	292.821297	0.421297				
Nivel 3	292.825746	0.425746				
Nivel 4	292.843387	0.443387				
Nivel 5	292.886258	0.486258				
Nivel 6	292.939433	0.539433				

Tabla 5. 3 – Resultados obtenidos con las diversas mallas

5.2. SIMULACIÓN EN EES

El diseño de la mini-central solar térmica se va a simular usando el programa EES (Engineering Equation Solver). Para el ciclo de potencia se determinarán los puntos de trabajo con ayuda de los parámetros iniciales de Presión y Temperatura al ingreso de la turbina de vapor.

CAPÍTULO VI

6. RESULTADOS

Después de haber simulado con las diferentes mallas, se ha seleccionado tomar los valores de la malla del nivel 5, debido a la convergencia de los valores. A continuación, en la tabla 6.1 se muestran los valores más importantes obtenidos de la simulación.

Propiedades	Mínimo Máxim		Promedio	Prom. General	
Presión Estática	15	1 20			
(Pa)	101677.317	117240.679	108882.829	108882.616	
Presión Total (Pa)			V V		
ET .	101710.877	122569.108	114506.808	114507.182	
Temperatura (K)	X	241			
S.	292.39942	293.373428	292.886424	292.886258	
Densidad (kg/m³)	Lai	80			
	854.969008	872.158558	871.839007	871.839116	
Viscosidad					
Dinámica (Pa.s)	0.04061147	0.044644940	0.042628207	0.042628597	
Velocidad (m/s)	1		1/		
	2.07495947	4.84785843	3.46140895	3.46163802	

Tabla 6. 1 - Resultados simulados con el Software SolidWorksFlowSimulation

El gráfico 6.1 representa el diagrama Temperatura – Entropía, y el gráfico 6.2 representa el diagrama Entalpía – Entropía.

UNIVERSIDAD

de santa maría

CATÓLICA

77

Gráfico 6.1 - Diagrama T - s del Ciclo de Potencia simulado en EES

Fuente: Elaboración propia

La tabla 6.2 muestra los resultados termodinámicos del Ciclo de Potencia simulado en el software EES.

Es Arrays Table							
Sort	1 h _i	² P _i	3 Si	4 T _i	5 Vi	° Xi	
	[kJ/kg]	[bar]	[kJ/kg·K]	[C]	[m ³ /kg]		
[1]	3043	5	7.423	290	0.513		
[2]	2409	0.08	7.697	41.49	16.87	0.9306	
[3]	173.7	0.08	0.5921	41.49	0.001008	0	
[4]	173.7	5	0.5906	41.39	0.001008		

Tabla 6. 2 - Resultados termodinámicos del Ciclo de Potencia simulado en EES

CAPÍTULO VII

7. ANÁLISIS ECONÓMICO

Los costos de instalación de las centrales termosolares son más altos para las plantas que usan sistema de tanque de almacenamiento, garantizando mayores factores de capacidad.

Los costos de las centrales termoeléctricas CCP son variables, suelen variar sus precios entre los 2550 \$/kWh y los 11265 \$/kWh para sistemas sin almacenamiento y entre los 6050 \$/kWh y los 13150 \$/kWh para sistemas con almacenamiento por un periodo de 8 horas.

El costo de la instalación en las centrales con receptor central está entre los 6000 \$/kWh y los 6300 \$/kWh, siendo mínima la variación de los costos entre los sistemas sin almacenamiento y con un almacenamiento de 4 horas.

Los costos de operación y mantenimiento de las centrales termosolares son superiores en comparación a los costos de las centrales fotovoltaicas, se estima que estos costos oscilan entre 0.02 – 0.03 \$/kWh para centrales con tecnología CPP y de 0.03 – 0.04 \$/kWh para centrales con tecnología de receptor central.

El LCOE en las centrales termosolares alcanza valores de 0.22 \$/kWh, y este valor está reduciéndose debido a la instalación de nuevas plantas y al aumento del factor de capacidad.

En el gráfico 7.1 se muestran los costos de instalación, factor de capacidad y el LCOE para las centrales termosolares.

Gráfico 7. 1 - Costos de Instalación, Factor de Capacidad y LCOE de las centrales termosolares

Fuente: La batalla solar: Fotovoltaica, Torre Central y CCP

El LCOE en las centrales fotovoltaicas se ha reducido a un valor de 0.36 \$/kWh en el periodo del 2010 al 2017, a un 0.1 \$/kWh, haciendo esta tecnología aún más competitiva.

Gráfico 7. 2 - Costos de Instalación, Factor de Capacidad y LCOE de las centrales fotovoltaicas

Fuente: La batalla solar: Fotovoltaica, Torre Central y CCD

El LCOE promedio de las centrales solares fotovoltaicas es 0.12 \$/KWh en comparación de valores de 0.22 \$/kWh de las centrales termosolares. También hay que considerar que los costos de operación y mantenimiento de las centrales solares fotovoltaicas son menores, debido a que no existen componentes rotantes en su configuración, tampoco existe un fluido caloportador ya que no presenta un ciclo termodinámico.

Gráfico 7. 3 - Comparación de los costos de instalación entre las diferentes tecnologías renovables

Fuente: La batalla solar: Fotovoltaica, Torre Central y CCP

CONCLUSIONES

El presente proyecto de Tesis ha sido planteado para demostrar que se puede implementar una mini-central solar térmica con una capacidad de 200 kVA para la generación de energía eléctrica a partir de recursos naturales, mediante el uso de la tecnología de colectores cilindro parabólicos. Este proyecto también plantea la solución de que se puede generar energía eléctrica a partir de la energía del Sol, y así fomentar una cultura en el uso de las energías renovables.

Se logró analizar las principales tecnologías solares para generación de electricidad, llegando a la conclusión de que la tecnología de colectores cilindro parabólicos es la mejor opción para desarrollar el proyecto, debido a las ventajas que brinda en comparación con otras tecnologías mencionadas en el proyecto.

Este proyecto es viable técnicamente, ya que la ubicación de la minicentral, así como también los valores que registra la región Arequipa, que son lo suficientemente altos, hacen que este proyecto sea justificable debido a que la tecnología desarrollada en la actualidad es de fácil acceso.

En este proyecto se realizó el dimensionamiento de una mini-central solar térmica, se han analizado los componentes del campo solar y la geometría solar, parámetros que son necesarios para determinar la superficie y el número de colectores para la instalación del proyecto.

Sin duda el sol es el recurso renovable más abundante que existe. El uso de tecnologías que sean viables desde un punto de vista técnico, económico y medio ambiental para aprovechar al máximo la radiación solar, es de principal importancia para cada persona que habita en nuestro planeta, ya que contribuye a la mitigación de gases de efecto invernadero y no contribuyen al calentamiento global, las centrales solares térmicas constituyen la forma de generación eléctrica con mayores ventajas para los sistemas eléctricos debido a la estabilidad que aportan y a las características que proporcionan a sus sistemas.

CATÓLICA **DE SANTA MARÍA**

83

Dentro de los aspectos negativos que presenta la implementación de estos sistemas de generación eléctrica, está el de la gran inversión económica necesaria que se necesita para poner en marcha este proyecto, lo que supone obtener el respaldo de grandes empresas. Otro aspecto negativo a considerar es que para implementar este proyecto se necesita de una gran cantidad de superficie para la instalación de los colectores solares.

BIBLIOGRAFÍA

- CASTELLS, X. (2012). Energías Renovables: Energía, Agua, Medioambiente, territorialidad y sostenibilidad. Madrid: Ediciones Díaz de Santos.
- (2) GÓMEZ RAMOS, A. (2015). Análisis de central termosolar de captadores cilindro parabólicos ante variaciones de parámetros de diseño. Tesis. Sevilla: Universidad de Sevilla.
- (3) GURU, B. y HIZIROGLU, H. (2003). *Máquinas Eléctricas y Transformadores*. Ciudad de México: Editorial Oxford University Press.
- (4) HOYOS, S., FRANCO, C. y DYNER I. (2017). "Integración de fuentes no convencionales de energía renovable al mercado eléctrico y su impacto sobre el precio" en *Ingeniería y Ciencia*.
- (5) KALOGIROU, S. (2009). Solar energy engineering: processes and systems.
- MOTT, R. (2006). *Mecánica de Fluidos*. Ciudad de México: Editorial Pearson Educación de México.
- (7) PAREDES VELASCO, C. (2012). Diseño de captador solar cilíndrico parabólico para aplicaciones rurales en Paraguay. Tesis. Escuela Técnica Superior de Ingenieros de Minas.
- (8) ROMERO, M., GONZALEZ AGUILAR, J., y ZARZA, E. (2016). *Energy Efficiency and Renewable Energy Handbook.*
- (9) SERRANO GARCÍA, D. (2012). Cálculo, diseño y análisis de una central termosolar de colectores cilíndrico-parabólicos operando con sales fundidas. Tesis. Madrid: Universidad Carlos III de Madrid.
- (10) VERA MELLA, N. (2005). Atlas climático de irradiación solar a partir de imágenes del satélite NOAA. Aplicación a la Península Ibérica. Tesis Doctoral. Barcelona: Universidad Politécnica de Cataluña.

Revistas

- (11) El mundo sustentable de las Energías Renovables. (2011). Buenos Aires.
- (12) InfOsinergmin. (2012). Lima.
- (13) La batalla solar: Fotovoltaica, Torre central y CCP. (2018). Madrid.
- (14) Plan Energético Nacional 2014-2025. (2014). Lima.
- (15) Proyecto: Electrificación Rural a base de Energía Fotovoltaica en el Perú.
 (2003). Atlas de Energía Solar en el Perú. Lima.

Páginas WEB

- (16) APEMEC. Asociación de Pequeñas y Medianas Centrales Hidroeléctricas. https://www.apemec.cl [Consulta: 18 de junio 2018].
- (17) CENERGIA (2017). Promoviendo el uso de energía renovable. <https://cenergia.org.pe/blog/paneles-solares-peru/> [Consulta: 15 de junio 2018]
- (18) EL PERIÓDICO DE LA ENERGÍA. (2018). https://elperiodicodelaenergía.com [Consulta: 20 de junio 2018].
- (19) Fundamentos Energía Solar Térmica. (2010).
 https://www.fing.edu.uy/if/solar/proyectos/PROYECTO_energ%C3%A
 Da_%20solar_Zabalza_Rev%201.pdf> [Consulta: 25 de junio 2018]
- (20) GEONOVA (2011). <https://geonova.wordpress.com/2011/10/12/lasenergias-renovables-son-aquellas-que-se-producen-de-forma-continuay-son-inagotables-a-escala-humana-solar-eolica-hidraulica-biomasa-ygeotermica/> [Consulta: 15 de junio 2018].
- (21) Helios ENERGY SYSTEMS. <http://www.energiagratis.com.mx/laenerg%C3%ADa-solar.html> [Consulta: 15 de junio 2018].

- (22) MILLENNIUM ENERGY SYSTEMS. (2012)
 ">http://www.millenniumenergies.com/espanol-productos/fresnel/>
 [Consulta: 20 de junio 2018].
- (23) OSINERGMIN. Energías Renovables. ">http://www.osinergmin.gob.pe/empresas/energias-renovables/biomasa/que-es-la-biomasa>">http://www.osinergmin.gob.pe/empresas/energias-renovables/biomasa/que-es-la-biomasa>">http://www.osinergmin.gob.pe/empresas/energias-
- (24) OSINERGMIN. Energías Renovables. http://www.osinergmin.gob.pe/empresas/energias-renovables/energia-geotermica [Consulta: 15 de junio 2018].
- (25) OSINERGMIN (2018). Central Majes Solar.
 http://www.osinergmin.gob.pe/seccion/centro_documental/electricidad/
 Documentos/PROYECTOS%20GFE/Acorde%C3%B3n/Generaci%C3
 %B3n/1.6.1.pdf> [Consulta: 28 de junio 2018]
- (26) OSINERMIN (2018). Central Solar Repartición.
 <http://www.osinergmin.gob.pe/seccion/centro_documental/electricidad/
 Documentos/PROYECTOS%20GFE/Acorde%C3%B3n/Generaci%C3
 %B3n/1.6.2.pdf> [Consulta: 28 de junio 2018]
- (27) OSINERMIN (2018). Central Tacna Solar.
 <http://www.osinergmin.gob.pe/seccion/centro_documental/electricidad/
 Documentos/PROYECTOS%20GFE/Acorde%C3%B3n/Generaci%C3
 %B3n/1.6.3.pdf> [Consulta: 28 de junio 2018].
- (28) OSINERMIN (2018). Central Panamericana Solar.
 http://www.osinergmin.gob.pe/seccion/centro_documental/electricidad/
 Documentos/PROYECTOS%20GFE/Acorde%C3%B3n/Generaci%C3
 %B3n/1.6.4.pdf> [Consulta: 28 de junio 2018].
- (29) OSINERMIN (2018). Central Moquegua FV.
 http://www.osinergmin.gob.pe/seccion/centro_documental/electricidad/
 Documentos/PROYECTOS%20GFE/Acorde%C3%B3n/Generaci%C3
 %B3n/1.6.5.pdf> [Consulta: 28 de junio 2018].
- (30) OSINERMIN (2018). Central Solar Rubí. http://www.osinergmin.gob.pe/seccion/centro_documental/electricidad/

Documentos/PROYECTOS%20GFE/Acorde%C3%B3n/Generaci%C3 %B3n/1.6.6.pdf> [Consulta: 28 de junio 2018].

- (31) OSINERMIN (2018). Central Solar Intipampa.
 http://www.osinergmin.gob.pe/seccion/centro_documental/electricidad/
 Documentos/PROYECTOS%20GFE/Acorde%C3%B3n/Generaci%C3
 %B3n/1.6.7.pdf> [Consulta: 28 de junio 2018].
- (32) RENOVETEC. Centrales termosolares CCP.
 http://energia.renovetec.com/centrales-de-ciclo-combinado/292-centrales-termosolares-ccp> [Consulta: 16 de junio 2018].
- (33) SCHLAICH BERGERMANN PARTNER. (2018).
 https://www.sbp.de/en/project/ [Consulta: 26 de junio 2018].
- (34) SostEnergía (2012). <https://sites.google.com/site/sostenergia/energiaeolica> [Consulta: 15 de junio 2018].
- (35) Time Zone Map. <https://www.timeanddate.com/time/map/> [Consulta: 28 de junio 2018].

ANEXOS

ANEXO Nº 1 – Función EES

"Datos Campo Solar"

Re=4E5 T_1=200 T_2=300 rho=711 upsilon=0.686

"Ecuaciones Campo Solar"

 $T_prom=(T_1+T_2)/2$ mu=upsilon*rho*(1/1000)^2 v=(Re*mu)/(0.065*rho) m_dot=rho*v*33.18E-4 U=1.433242-0.00566*(T_prom-19.4)+0.000046*(T_prom-19.4)^2 Q_dot_colector.ambiente=U*pi*0.07*99.5*(T_prom-19.4) Q_dot_colector.fluido=545*700*cos(40.03)*0.7*0.8945*0.97-Q_dot_colector.ambiente DELTAh=1.83*(T_o-T_1)+0.001875*(T_o^2-T_1^2) Q_dot_colector.fluido/1000=m_dot*(DELTAh) T_o-T_1=T_incre N_colectores=100/T_incre N_colectores*(Q_dot_colector.fluido/1000)=W_dot_térmica.util N_lazos=537.05/W_dot_térmica.util

"Datos Ciclo Potencia"

P[1]=5 T[1]=290 P[2]=0.08 n_ad=0.88 x[3]=0 W_dot_bornes=200 n_ge=0.98 n_mec=0.91 c_p=4.2 DELTAT=10 gamma=9800 H=5 n_B=0.92

"Ecuaciones Ciclo Potencia"

 $\label{eq:heat} \begin{array}{l} h[1]=Enthalpy(Water,T=T[1],P=P[1])\\ s[1]=Entropy(Water,T=T[1],P=P[1])\\ v[1]=Volume(Water,T=T[1],P=P[1])\\ s2i=s[1]\\ h2i=Enthalpy(Water,s=s2i,P=P[2])\\ h[2]=h[1]-n_ad^*(h[1]-h2i)\\ T[2]=Temperature(Water,P=P[2],h=h[2])\\ s[2]=Entropy(Water,P=P[2],h=h[2])\\ s[2]=Volume(Water,P=P[2],h=h[2])\\ v[2]=Volume(Water,P=P[2],h=h[2])\\ x[2]=Quality(Water,P=P[2],h=h[2])\\ P[3]=P[2] \end{array}$

T[3]=Temperature(Water,P=P[3],x=x[3]) h[3]=Enthalpy(Water,P=P[3],x=x[3]) s[3]=Entropy(Water,P=P[3],x=x[3]) v[3]=Volume(Water,P=P[3],x=x[3]) P[4]=P[1] $h[4]=h[3]+(v[3]^*(P[4]-P[3]))$ T[4]=Temperature(Water,P=P[4],h=h[4]) s[4]=Entropy(Water,P=P[4],h=h[4]) v[4]=Volume(Water,P=P[4],h=h[4]) $m_dot_v=W_dot_bornes/(n_ge^*n_mec)/(h[1]-h[2])$ $Q_dot_B=m_dot_v^*(h[2]-h[3])$ $m_dot_R=Q_dot_B/(c_p^*DELTAT)$ $Q=m_dot_R/1000$ $P_B=(gamma^*Q^*H)/n_$

UNIVERSIDAD

DE SANTA MARÍA

CATÓLICA

90

ANEXO N° 3 – Central Majes Solar 20T

Osinergmin

CENTRAL MAJES SOLAR 20T

DENOMINACIÓN	CENTRAL MAJES SOLAR 20T
EMPRESA CONCESIONARIA	GRUPO T SOLAR GLOBAL S.A.
TECNOLOGÍA	Solar Fotovoltaica – Módulos Fijos
UBICACIÓN	
Departamento	Arequipa
Provincia	Caylloma
Distrito	Majes
Altitud	1 680 msnm
DATOS TÉCNICOS	
Potencia Instalada	20 MW
Punto de Oferta	Barra de Repartición 138 kV
Cantidad de Módulos Fotovoltaicos	55 704 (Módulos de 350, 370, 390 y 410 W)
Cantidad de Centros de Transformación	16 (1 250 kW c/u)
Nivel de Tensión de Transformadores Secos	0,3/23 kV (1,4 MVA)
Cantidad de Inversores	32 (625 kW c/u)
Tensión de Entrada a Inversores (1Ø)	0,5 - 0,825 kV- DC (Corriente Continua)
Tensión de Salida de Inversores (3Ø)	0,3 kV– AC (Corriente Alterna)
Factor de Planta	21,5%
DATOS DE CONTRATO	
Firma de Contrato	31.03.2010
Puesta en Operación Comercial (POC)	31.10.2012
Energía Anual Ofertada	37 630 MWh
Precio de la Energía Ofertado	22,25 Ctvs US\$/kWh
 INFORMACIÓN RELEVANTE La central está constituida por 55 704 módulo 390 y 410W, todos ellos orientados hacia el No La central consta de 16 Centros de Transforma 2 Inversores de 625 kW c/u. Existen 2 Anillos e c/u de los 2 Anillos se alimenta al Transformad La radiación solar máxima en la zona del proye Mediante R.M. № 244-2011-MEM/DM del 23.0 a favor de GTS Majes S.A.C. Con R.S. № 2020-2012-EM del 02.02.2012 se ou GTS Majes S.A.C. 	si fotovoltaicos de capa fina con potencias de 350, 370, orte y con una inclinación de 15° sobre la horizontal. ción (C.T.) de 1,25 MW c/u; cada C.T. está equipada con en 23 kV (Anillos 1 y 2, cada Anillo agrupa 8 C.T.). Desde lor de interconexión al SEIN de 20 MVA (23/138 kV). cto, esto es, en las Pampas de Majes es de 724 W/m ² . 35.2011 se otorgó la Concesión Definitiva de Generación, torgó la Concesión Definitiva de Transmisión, a favor de
 La S.E. Majes Solar (S.E. Pedregal) alimenta a la kV S.E. Majes (SEIN) - S.E. Majes Solar; y de die S.E. Camaná (SEIN). Mediante R.M. N° 227-2012-MEM/DM se apro) Barra Principal de 138 kV. A dicha Barra llega la L.T. 138 cha Barra parte la L.T. 138 kV S.E. Majes Solar (138 kV) bó la modificación de la Puesta en Operación Comercial
del 30.06.12 al 31.10.2012.	

- La Puesta en operación Comercial se dio el 31.10.2012.
 La C.S. Majes actualmente está entregando al Sistema Interconectado Nacional una potencia de 20 MW (al medio día).
- El periodo de generación diario es de 06:30 a 17:30 horas aproximadamente.
 El monto de inversión aproximado fue de 73,6 MM US\$

Disposición Final de Módulos Fotovoltaico:

n de Corriente Contin ntro de Tra Alterna

de Potencia 20 MVA, 23/138 kV (S.E. Central Majes Solar (S.E. Pedregal))

División de Supervisión de Electricidad Unidad de Supervisión de Inversión en Electricidad - Marzo 2018

120

ANEXO Nº 4 – Central Solar Repartición 20T

Osinergmin

CENTRAL SOLAR REPARTICIÓN 20T

DENOMINACIÓN	CENTRAL SOLAR REPARTICIÓN 20T
EMPRESA CONCESIONARIA	GRUPO T SOLAR GLOBAL S.A.
TECNOLOGÍA	Solar Fotovoltaica – Módulos Fijos
UBICACIÓN	
Departamento	Arequipa
Provincia	Caylloma
Distrito	La Joya
Altitud	1 187 msnm
DATOS TÉCNICOS	
Potencia Instalada	20 MW
Punto de Oferta	Barra de Repartición 138 kV
Cantidad de Módulos Fotovoltaicos	55 704 (Módulos de 350, 370, 390 y 410 W
Cantidad de Centros de Transformación	16 (1 250 kW c/u)
Nivel de Tensión de Transformadores Secos	0,3/23 kV-1,4 MVA
Cantidad de Inversores	32 (625 kW c/u)
Tensión de Entrada a Inversores (1Ø)	0,5 - 0,825 kV - DC (Corriente Continua)
Tensión de Salida de Inversores (3Ø)	0,3 kV – AC (Corriente Alterna)
Factor de Planta	21,4%
DATOS DE CONTRATO	
Firma de Contrato	31.03. 2010
Puesta en Operación Comercial (POC)	31.10.2012
Energía Anual Ofertada	37 440 MWh
Precio de la Energía Ofertado	22,3 Ctvs. US\$/kWh

INFORMACIÓN RELEVANTE

 La central está constituida por 55 704 módulos fotovoltaicos de capa fina con potencias de 350, 370, 390 y 410 W, todos ellos orientados hacia el Norte y con una inclinación de 15° sobre la horizontal.

 La central consta de 16 Centros de Transformación (C.T.) de 1,25 MW c/u; cada C.T. está equipada con 2 Inversores de 625 kW c/u. Existen 2 Anillos en 23 kV (Anillos 1 y 2, cada Anillo agrupa 8 C.T.) Desde c/u de los 2 Anillos se alimenta al Transformador de 20 MVA (23/138 kV).

 La radiación solar máxima en la zona del proyecto, esto es, en la localidad de San José es de 724 W/m².

- Mediante R.M. Nº 243-2011-MEM/DM del 23.05.2011 se otorgó la Concesión Definitiva de Generación.
 Con R.S. N° 035-2012-EM del 23.02.2012 se otorgó la Concesión Definitiva de Transmisión, ambas a
- Con R.S. N° 035-2012-EM del 23.02.2012 se otorgó la Concesión Definitiva de Transmisión, ambas a favor de GTS Majes S.A.C.
 Mediante R.M. N° 228-2012-MEM/DM se aprobó la modificación de la Puesta en Operación
- Mediante R.M. N° 228-2012-MEM/DM se aprobó la modificación de la Puesta en Operación Comercial del 30.06.12 al 31.10.2012.
- La Puesta en operación Comercial se dio el 31.10.2012.
- La central actualmente está entregando al Sistema Eléctrico Interconectado Nacional una potencia de 20 MW (al medio día).
- El periodo de generación diario es de 06:30 a 17:30 horas aproximadamente.
- Monto de Inversión: 73,5 MM US\$

Instalación de Módulos Fotovoltaicos

Circuito de Salida (A.C.) de Inversores (3Ø)

Transformador de Potencia 20 MVA, 23/138 kV

División de Supervisión de Electricidad

Supervisión de Inversión en Electricidad – Julio 2017

ANEXO N° 5 – Central Tacna Solar

Osinergmin

CENTRAL TACNA SOLAR

DENOMINACIÓN	CENTRAL TACNA SOLAR	
EMPRESA CONCESIONARIA	TACNA SOLAR S.A.C.	
TECNOLOGÍA	Solar Fotovoltaica – Módulos Móviles	The second second
UBICACIÓN		
Departamento	Tacna	
Provincia	Tacna	Tacha Solar A
Distrito	Tacna	Таула
Altitud	560 msnm	and the second
DATOS TÉCNICOS		Tarder 1
Potencia Instalada	20 MW	
Punto de Oferta	Barra Los Héroes 66 kV	Verteen
Cantidad de Módulos Fotovoltaicos	74 988 (290 W pico c/u)	Tores
Cantidad de Seguidores Solares	182	Plano de Ubicación
Cantidad de Centros de Transformación (C.T.)	16 (1,25 MW c/u)	Fiano de oblicación
Nivel de Tensión de Transformadores de C.T.	0,3/23 kV (1,25 MVA)	
Cantidad de Inversores	32 (625 kW c/u)	
Tensión de Entrada a Inversores (1Ø)	0,5 - 0,825 kV – DC (Corriente Continua)	
Tensión de Salida de Inversores (3Ø)	0,3 kV – AC (Corriente Alterna)	Harris
Factor de Planta	26,9%	
DATOS DE CONTRATO		
Firma de Contrato	31.03. 2010	
Puesta en Operación (POC)	31.10.2012	
Energía Anual Ofertada	47 196 MWh	
Precio de la Energía Ofertado	22,5 Ctvs. US\$/kWh	
INFORMACIÓN RELEVANTE		
 La central consta de 16 Centros de Transformació 2 Inversores de 625 kW c/u. Existen 4 Anillos en Anillos se alimenta al Transformador de 20 MVA. La línea de transmisión 66 kV (5,4 km) conecta la del SEIN. Mediante R.M. Nº 299-2011-MEM/DM del 0 Generación. Con R.S. N° 025-2012-EM del 08.02.2012 se otor de transmisión eléctrica a favor de GTS Tacna Sol Mediante R.M. N° 231-2011-MEM/DM del 11. estableciendo como nueva fecha para la Puesta e La Puesta en Operación Comercial se dio 813.10 La C.S. Tacna actualmente está entregando al Sist de 16 MW. El periodo de generación diario es de 06:00 a 17: El monto de inversiónfue de 94,6 MM US\$ 	n (C.T.) de 1,25 MW c/u; cada C.T. está equipada con 23 kV (cada Anillo agrupa 4 C.T.). Desde c/u de los 4 (23/66 kV). C.S. Tacna (S.E. Parque Solar) con la S.E. Los Héroes 4.07.2011 se otorgó la Concesión Definitiva de gó Concesión Definitiva para desarrollar la actividad ar S.A.C. 05.2011, se autorizó la modificación de Contrato, n Operación Comercial para el 31.10.2012. .2012. tema Eléctrico Interconectado Nacional una potencia 30 horas aproximadamente.	Idódulos Solares Instalados
ESQUEMA UNIFILAR DE LA G	CENTRAL DE GENERACIÓN	A DAYSA
C.S. TACNA S.E. PARQUE SOLAR (20 MW) 23 KV 20 MVA 66 KV 23/66 KV	R S.E. LOS HEROES	
		Transformador de Potencia de 20 MW - 23 7 (S.E. C.S.Tacna)

División de Supervisión de Electricidad Unidad de Supervisión de Inversión en Electricidad - Marzo 2018

UNIVERSIDAD Católica De Santa María

ANEXO N° 6 – Central Panamericana Solar

Osinergmin

CENTRAL PANAMERICANA SOLAR

DENOMINACIÓN	PANAMERICANA SOLAR
EMPRESA CONCESIONARIA	PANAMERICANA SOLAR S.A.C.
TECNOLOGÍA	Solar Fotovoltaica – Módulos Móviles
UBICACIÓN	
Departamento	Moquegua
Provincia	Mariscal Nieto
Distrito	Moquegua
Altitud	1 410 msnm
DATOS TÉCNICOS	
Potencia Instalada	20 MW
Punto de Oferta	Barra Ilo ELP 138 kV
Cantidad de Módulos Fotovoltaicos	72 000 (290 W pico c/u)
Cantidad de Seguidores Solares	174
Cantidad de Centros de Transformación (C.T.)	16 (1,25 MW c/u)
Nivel de Tensión de Transformadores de C.T.	0,3/23 kV
Cantidad de Inversores	32 (625 kW c/u)
Tensión de Entrada a Inversores (1Ø)	0,5 - 0,825 kV – DC (Corriente Continua)
Tensión de Salida de Inversores (3Ø)	0,3 kV – AC (Corriente Alterna)
Factor de Planta	28,9%
DATOS DE CONTRATO	
Firma de Contrato	31.03.2010
Puesta en Operación Comercial (POC)	31.12.2012
Energía Anual Ofertada	50 676 MWh
Precio de la Energía Ofertado	21,5 Ctvs. US\$/kWh
INFORMACIÓN RELEVANTE	
 La central se ubicada en el km 1.190 de la Paname 	ericana Sur en los distritos El Algarrobal y Moquegu
 La Central utiliza el potencial lumínico del sol 	para generar electricidad limpia y renovable (I
módulos fotovoltaicos capturan la potencia del si	ol v la trasforma en electricidad).
 La sentral saté sensitivida nen 72.000 Médula. 	- Estevisites de 200 W size e/u tedes elles

 La central está constituida por 72 000 Módulos Fotovoltaicos de 290 W pico c/u, todos ellos de estructura metálica en acero galvanizado. La estructura está anclada sobre pilotes circulares de hormigón. La central está equipada con 174 sistemas de seguimiento solar.
 La central consta de 16 Centros de Transformación (C.T.) de 1,25 MW c/u; cada C.T. está equipada

 La central consta de 16 Centros de Transformación (C.T.) de 1,25 MW c/u; cada C.T. está equipada con 2 Inversores de 625 KW c/u. Existen 4 Anillos en 23 kV (cada Anillo agrupa 4 C.T.); desde c/u de los 4 Anillos se alimenta al Transformador de 20 MVA (23/138 kV).
 La Concesión Definitiva de Generación se otorgó mediante Resolución Ministerial Nº 272-2011-

MEM/DM del 22.06.2011.
 El 08.07.2012 el MINEM mediante R.S. N° 075-2012-EM otorgó la Concesión Definitiva de Transmisión

para la L.T. 138 kV Planta de Generación Solar Panamericana Solar 20TS – Derivación L.T. CT Ilo – S.E. Toquepala. La fecha de Puesta en Operación Comercial se modificó del 30.06.2012 al 31.12.2012. La Puesta en operación Comercial se dio el 31.12.2012. La central actualmente está entregando al Sistema Eléctrico Interconectado Nacional una potencia de

- La central actualmente está entregando al Sistema Eléctrico Interconectado Nacional una potencia de 16 MW.
- El periodo de generación diario es de 06:00 a 17:30 horas aproximadamente.
 Monto de Inversión: 94,6 MM US\$

Instalación de Módulos Fotovoltaicos

Instalación de Seguidor Solar

S.E. Central Panamericana Solar (23/138 kV)

División de Supervisión de Electricidad Unidad de Supervisión de Inversión en Electricidad - Marzo 2018

ANEXO N° 7 – Central Solar Moquegua FV

Osinergmin

CENTRAL SOLAR MOQUEGUA FV

DENOMINACIÓN	MOQUEGUA EV	
EMPRESA CONCESIONARIA	MOQUEGUA EV S.A.C.	
TECNOLOGÍA	Solar Eotovoltaica – Módulos Móviles	15000
UBICACIÓN	Solar Fotovortalea Modulos Mones	
Departamento	Moquegua	THE R
Provincia	Mariscal Nieto	and the sumption
Distrito	Moquegua	
Altitud	1 410 msnm	-
DATOS TÉCNICOS		
Potencia Instalada	16 MW	
Punto de Oferta	Barra 138 kV S.E. Ilo ELP	
Barra de Conexión	Barra de 23 kV - S.E. Panamericana Solar	Plano
Cantidad de Centros de Transformación (C.T.)	16 (1 250 KVA C/U)	
Captidad de Inversores	0,3/23 KV 26 (24 x 625 kW/ + 2 x 500 kW/)	
Tensión de Entrada a Inversores (10)	0.5 - 0.825 kV = DC (Corriente Continua)	
Tensión de Salida de Inversores (30)	0.3 kV = AC (Corriente Alterna)	
Factor de planta	30.5%	
DATOS DE CONTRATO		
Firma de Contrato	30.09.2011	
Puesta en Operación Comercial (POC)	31.12.2014	
Energía Anual Ofertada	43 000 MWh	
Precio de la Energía Ofertado	11,99 Ctvs. US\$/kWh	sus and the
		1-
INFORMACIÓN RELEVANTE	a generar electricidad limpia y renewable (Lee	and the second second
 La central utiliza el potencial lumínico del sol par módulos fotovoltaisos canturan la notoncia del sol y 	a generar electricidad limpia y renovable (Los	Módulos foto
 La central está ubicada en el km 1 190 de la Panam. 	ericana Sur	
 La central está constituida por Módulos Eotovo 	ltaicos de 280 W pico c/u, instalados sobre	
estructuras metálicas en acero galvanizado. La est	ructura está anclada sobre pilotes circulares de	
hormigón. La central está equipada con sistemas d	e seguimiento solar. El seguidor solar de un eje	
horizontal consta de una serie de vigas de torsión o	orientadas en dirección Norte-Sur sobre las que	and the second s
se encuentran montados los módulos solares fotovo	oltaicos en filas.	THE REPORT OF TH
La central consta de 16 Centros de Transformación	(C.T.) de 1 250 kVA c/u.	La
 Mediante Resolución Directoral N° 348-2012-MEM 	I/AAE (21.12.2012) se aprobó la Declaración de	
Impacto Ambiental (DIA) de la central.		and the second
 El 31.10.2012 con R.M. 496-2012-MEM/DM se ap 	probó la concesión definitiva de generación de	
energía eléctrica.		Charles and the second
 El Estudio de Pre Operatividad se aprobó mediante 	Carta COES/D/DP-761-2011 (13.12.2011).	
 El 03.10.2013 se otorgo la concesion definitiva p 	ara desarrollar la actividad de transmision de	Vista de los
energia electrica en la L.I. 22,9 kV S.E. Moquegua F	V-S.E. Panamericana Solar mediante la R.S. 062-	States in the second
2013-EWI. Madianta Oficia Nº 1415 2014 MEM/DGE dol 26 00	2014 co octablaco ovtandar la facha ROC basta	
al 21 02 2015	5.2014 se establece extender la fecha POC flasta	
 El inicio de obra se realizó en el segundo trimestre (del 2014	
Con carta COES/D/DP-1754 el COES certificó el inic	io de operación comercial de la central a partir	
del 31.12.2014.	ale operación contercial de la central a parti	
 El monto de inversión aproximado fue de 43 MM U 	sś.	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	40.4 Mar	
		and a second second
50		Vista del cone
ESQUEMA ELÉCTRICO	DE LA CENTRAL	
CENTRAL SULAR		
MOQUEGUA FV	S.E. PANAMERICANA	
(16 MW)	SOLAR	
	OULAN	
		A
IG CENTROS DE	0 240 MM ²	
	,431 km	THE REAL PROPERTY OF
27 11	27 11	
20 KV	20 KV	
		the state of the

de Ubicación

oltaicos instalado

onado del inverso

118

División de Supervisión de Electricidad Unidad de Supervisión de Inversión en Electricidad - Marzo 2018

Osinergmin

CENTRAL SOLAR RUBÍ (144,48 MW)

法		•		
EMPRESA CONCESIONARIA	ENEL GREEN POWER PERÚ S.A.			SSEE Montavo 220/500kV
La central tendrá una capacidad de	144,48 MW, que se obtendrá meo	liante la instalación de	560880 módulos	Rubi-Montalvo
fotovoltaicos de 320 W. La conexión simple circuito de 21 51 km	n al SEIN se realizará a través dela	L.T. 220 kV S.E. Rubí - !	S.E. Montalvo, de	Mon
UBICACIÓN				COMP. CO
Departamento	Moquegua			Control Negurity
Provincia Distrito	Mariscal Nieto Moguegua			aneens
Altitud	1 410 msnm			
DATOS DE LA CENTRAL				
Potencia Instalada	144,48 MW			A State State
Tipo de Módulos	Reisen			IS IN L
Potencia de Módulos	320 W			Ubicación
N° de Inversores	164			Oblacion
Tipo de Inversores	Fimer R11015TL			
Tensión de Salida de Inversores	0.4 kV - AC			
Tipo de Estructura	Seguidor Horizontal de 1 eje			
Ángulo de Seguimiento	45°			
N° de Centros de Transformación	41			
Potencia por Centro de Transfor. Relación de Transformación	3,524 MW			
DATOS DEL TRANSFORMADOR	T1	T2		
Potencia Nominal	70/90 MVA	70/90 MVA		
Relación de Transformación	33/220 kV	33/220 kV		
Marca	Chint Eléctric	Chint Eléctric		
Ano de Fabricación	2017	2017		
Tipo de Contrato	Suministro RER (4ta Subasta)	Cierre Financiero	15.12.2015 (si)	
Firma de Contrato	17.05.2016	Llegada de Equipos	18.08.2017 (si)	2018/
Energía Ofertada	415,00 GWh/año	Inicio de Obras	30.11.2016 (si)	and the second
Precio de la Energía Ofertada	47,98 US\$/MWh	Inicio de Montaje	31.05.2017 (si)	Vista de los paneles solares
INFORMACIÓN RELEVANTE	30.01.2018	POC	30.01.2018 (SI)	
 La Concesión Definitiva para des MW, fue otorgada mediante R.M El 25.10.2017, el Comité de Ope Estudio de Operatividad de la ce El proyecto cuenta con Certificad Solar Fotovoltaica, caminos de a El 31.10.2017, el COES autorizó I El 10.11.2017, se conectó por pri Durante pruebas, el 29.01.2018, El avance físico global es de 100° El 29.01.2018, el COES aprobó la nominal de 144,48 MW, a partir El monto de inversión aproximac 	arrollar la actividad de generación 1. N° 328-2017-MEM/DM del 02.0 ración Económica del Sistema Int tntal. o de Inexistencia de Restos Arque cceso y L.T. 220 kV S.E. Rubí -S.E. a Conexión para las Pruebas de Pi imera vez la C.S.F. Rubí con una p generó 152,6 MW. % Puesta en Operación Comercial de de las 00:00 horas del 30.01.2018 do fue de 165 MM US\$, según lo i	e eléctrica en la futura (8.2017. erconectado Nacional ológicos (CIRA) aproba Montalvo. Jesta en Servicio de la otencia de 3,5 MW. e la C.S. Rubí, con una p ndicado por la Concesi	central de 144,48 (COES) aprobó el do para la Central central. otencia instalada onaria.	Fasta de inversores y transformad
	DIAGRAMIA UNIFILAR			A
CENTRAL SOLAR RUBÍ (144,48 MW)	S.E. RUBÍ 220 KV 70/90 MVA 70/90 MVA	S.E ACAR 481mm ² 21,51 km	MONTALVO 220 KV	
				our control induit

División de Supervisión de Electricidad Unidad de Supervisión de Inversión en Electricidad - Marzo 2018

ANEXO N° 9 – Central Solar Intipampa

Osinergmin

CENTRAL SOLAR INTIPAMPA (40 MW)

EMPRESA CONCESIONARIA	ENGIE ENERGÍA PERÚ S.A.			and the second s
DESCRIPCIÓN				Lormia
La central tiene una capacidad de	40 MW, que se obtiene media	nte la instalación de 1	.38 120 módulos	Laste provincial Conversion or properties
fotovoltaicos de 320 W. La conexió	n al SEIN se realiza a través de u	na derivación tipo "PI"	de la L.T. 138 kV	Consumptions the Annual PUNO
S.E. Moquegua - S.E. Mill Site.				Copilal deparamente Octobel de persente One péladation Procente
UBICACIÓN				
Departamento	Moquegua			there there there
Provincia	Mariscal Nieto			GENERAL SANCHEZ CEREO
Distrito	Moquegua			ADEOUIDA Company
Altitud	1 410 msnm			AALOUTAA (Bellan Calage Orman Carena
DATOS DE LA CENTRAL				Patrice Constanting Congentian American
Potencia Instalada	40 MW			And
N° de Módulos en serie	30			MARISCAL NIBTO
Tipo de Módulos	Policristalino			interesting interesting
Potencia de Módulos	320 – 325 W			Projecto
N° de Inversores	18			Intigampa
Tipo de Inversores				And have been started
Potencia de Inversores	2,35 MVA			and a series of any of the series of the ser
Tensión de Salida de Inversores	0,66 kV - AC			er a great tacash () TACNA
Tipo de Estructura	Seguidor horizontal de 1 eje			o more A DE MA
Ángulo de Seguimiento	55°			E Patto Sand Degetta
N° de Centros de Transformación	-			The second and the second
Potencia por Centro de Transfor.	4,7 MVA			ACIFICO
Relación de Transformación	0,66/22,9 kV			Ubicación
DATOS DEL TRANSFORMADOR	T1			
Potencia Nominal	50 MVA			
Relación de Transformación	22.9/138 kV			
Marca	120 C			
Año de Fabricación				
DATOS DE CONTRATO		HITOS		
Tipo de Contrato	Suministro RER (4ta Subasta)	Cierre Financiero	14.02.2017 (si)	
Firma de Contrato	17.05.2016	Llegada de Equipos	14.05.2017 (si)	
Energía Ofertada	108,40 GWh/año	Inicio de Obras	11.03.2017 (si)	
Precio de la Energía Ofertada	48,50 US\$/MWh	Inicio de Montaje	31.05.2017 (si)	
Puesta en Operación Comercial	31.03.2018	POC	31.03.2018 (si)	
INFORMACIÓN RELEVANTE				
 La Concesión Definitiva para desa fue otorgada mediante R.M. N° 3 El 20.07.2017, el COES aprobó el El 02.11.2017, el COES autorizó Fotovoltaica Intipampa. La construcción de la Central Sola se encuentran concluidas. Actualmente la S.E. Intipampa el igual que la barra de interconexi El COES aprobó la Operación CC 31.03.2018, con una potencia in: El Monto de inversión fue de 52, 	arrollar la actividad de generación 812-2017-MEM/DM del 01.08.20 Estudio de Operatividad del proy la conexión para las pruebas de ar Fotovoltaica Intipampa, las obra- está conectada al SEIN, estando a ón. omercial de la Central Solar Foto stalada nominal de 44,54 MW. 3 MM US\$, según lo indicado por DIAGRAMA UNIFILAR	eléctrica en la futura c 17. vecto. e puesta en servicio de as de Subestación y Líne el transformador princ voltaica Intipampa de la Concesionaria.	entral de 40 MW, e la Central Solar ea de Transmisión ipal conectado al sde las 00:00 del	Inortaje de paneles solares
		<u>с</u> г. 1		Caseta de inversores
		3.E. I	IUGUEGUA	
C.S. INTIPAMPA (40 MW)		L-1384A 10,76 km		
22,9 KV	138 KV	L-1384B	138 κV 138 κV	-
		28,02 km		

S.E. MILL SITE

116

cia de 50 MVA

dor de

División de Supervisión de Electricidad Unidad de Supervisión de Inversión en Electricidad - Marzo 2018 Publicación autorizada con fines académicos e investigativos

ANEXO N° 10 – Tubo Absorbente SCHOTT PTR 70

SCHOTT PTR®70 Receivers

Designed for maximum profitability of the power plant

SCHOTT Solar CSP introduces the 4th generation of receivers, which benefits from the experience of more than 1 Million receivers installed in over 50 CSP projects worldwide. The new generation SCHOTT PTR®70 again sets the benchmark in product performance and provides superior product durability and lifetime.

The SCHOTT PTR®70 is designed for usage in state-of-the-art power plants operating with oil-based heat transfer fluids at temperatures up to 400 °C.

Stable performance

The optical properties of the absorber coating are crucial for the performance of the collector field. SCHOTT Solar CSP has developed and patented the absorber coating with remarkable optical and thermal values for a long-term performance stability.

Higher efficiency through low heat loss

A new receiver end design includes an innovative internal heat shield that minimizes heat losses and improves the efficiency of the receiver.

Improved handling and robustness

The 4th generation receiver is significantly lighter and is equipped with a protection cap at the receiver ends. It prevents mechanical impact to sensitive parts during mounting, installation and operation, thus improving project execution.

Validated best-in-class performance

According to measurements at DLR (German Aerospace Centre) Quarz, the SCHOTT 4th generation receiver shows an optical performance 6 % above the industry standard.

Heat loss measurements carried out in a round robin test performed by SCHOTT Solar CSP in cooperation with NREL (US National Renewable Energy Laboratory) and DLR confirmed a heat loss of less than 250 W/m at working temperatures (400 °C).

Thermal losses

Technical specification

Components	Specification
Dimension	 length: 4060 mm at 20°C ambient temperature (159.8 inches at 68°F) aperture length: > 96.7% of the bulk length at 350°C/662°F working temperature
Absorber	• outer diameter: 70 mm/2.75 inches • steel-type: DIN 1.4541 or similar • solar absorptance: $\alpha_{150} \ge 95.5\%$ $\alpha_{ASTM} \ge 96\%$ • thermal emittance: $\epsilon \le 9.5\%$
Glass envelope	 Borosilicate glass outer diameter: 125 mm/4.9 inches antireflective coating solar transmittance: τ ≥ 97%
Thermal losses	 in conjunction with SCHOTT Solar CSP patented shields 250 W/m (@ 400 °C) 165 W/m (@ 350 °C) 110 W/m (@ 300 °C) 70 W/m (@ 250 °C)
Vacuum	 residual gas pressure: ≤ 10⁻³ mbar
Heat transfer fluid	\bullet non-corrosive thermal oil with an effective partial pressure of dissolved Hydrogen of $p_{\rm H2}$ < 30 Pa
Operating pressure	 ≤ 41 bar (absolute)

250 200 150 100 50 250 300 350 400 absorber temperature [°C]

Version October 2013

SCHOTT Solar CSP GmbH Hattenbergstrasse 10 55122 Mainz Germany Phone +49 (0)6131/66-14158 Fax +49 (0)3641/2888-9192 csp@schottsolar.com

www.schott.com/csp

SCHOTT solar

100

ANEXO N° 11 – Propiedades Aceite Therminol 55

THERMINOL[°] 55

heat transfer fluid

Eastman Therminol[®] 55 heat transfer fluid is a unique, synthetic fluid designed to provide reliable, consistent heat transfer performance over a long life at maximum bulk temperatures up to 290°C (550°F).

- Delivers excellent cost performance over the fluid life when compared to common mineral oil-based heat transfer fluids, even when operating temperatures reach a maximum extended use temperature of 315°C (600°F).
- More readily pumpable at low temperatures than the majority of other mineral oil-based heat transfer fluids.
- Savings in capital, operations, and maintenance costs are often achieved when used in applications that traditionally use steam as a heating medium.

Therminol 55 is available in the Americas and Asia-Pacific. Contact your local Eastman Therminol sales representative for more information.

Physical and chemical characteristics

Therminol 55 fluid is designed for use in nonpressurized/lowpressure, indirect heating systems. It delivers efficient, dependable, uniform process heat with no need for high pressures. The high boiling point of Therminol 55 helps reduce the volatility and fluid leakage problems associated with other fluids.

The recommended maximum bulk and film temperatures for Therminol 55 are based on industry-standard thermal studies. Operation at or below these temperature maximums can provide long service life under most operating conditions.

Actual fluid life is dependent on the total system design and operation and can vary by heat transfer fluid chemistry. As fluid ages, the formation of low- and high-boiling compounds may result. Low-boiling compounds should be vented from the system as necessary to a safe location away from personnel and sources of ignition and in compliance with applicable regulations and laws. The high-boiling compounds can be very soluble in the fluid. Significant overheating or fluid contamination will accelerate decomposition and may result in increased highboiler and solids concentrations. Excess solids can typically be filtered for removal.

Therminol 55 has been shown to be significantly less sensitive than mineral oils to the negative consequences (sludging, fouling) of thermal oxidation. Eastman recommends that systems utilizing Therminol 55 fluid should be blanketed with an atmosphere of inert gas to protect against the effects of fluid oxidation on its performance and life expectancy. Pressure relief device(s) should be installed where required.

Therminol 55 is noncorrosive to metals commonly used in the construction of heat transfer systems.

While Therminol 55 has a relatively high flash point, it is not classified as a fire-resistant heat transfer fluid. Consequently, the use of protective devices may be required to minimize fire risk and users of Therminol 55 should check with their safety and risk management experts for specific instructions.

Typical properties^a

Appearance	Clear, yellow liquid
Composition	Synthetic hydrocarbon mixture
Maximum bulk temperature	290°C (550°F)
Maximum extended use temperature	315°C (600°F)
Maximum film temperature	335°C (635°F)
Normal boiling point	351°C (664°F)
Pumpability, at 300 mm²/s (cSt)	-8°C (17°F)
Pumpability, at 2000 mm²/s (cSt)	-28°C (-18°F)
Flash point, COC (ASTM D-92)	177°C (350°F)
Autoignition temperature (ASTM E-659)	366°C (691°F)
Autoignition temperature (DIN 51794)	382°C (719°F)
Pour point (ISO 3016)	–54°C (–65°F)
Minimum liquid temperatures for fully developed turbulent flow ($N_{Re} > 10000$)	
10 ft/s, 1-in. tube (3.048 m/s, 2.54-cm tube)	67°C (152°F)
20 ft/s, 1-in. tube (6.096 m/s, 2.54-cm tube)	45°C (114°F)
Minimum liquid temperatures for transitional region flow ($N_{Re} > 2000$)	
10 ft/s, 1-in. tube (3.048 m/s, 2.54-cm tube)	24°C (75°F)
20 ft/s, 1-in. tube (6.096 m/s, 2.54-cm tube)	11°C (52°F)
Coefficient of thermal expansion @ 200°C	0.000961/°C (0.000534/°F)
Heat of vaporization at maximum use temperature	228 kJ/kg (98.1 Btu/lb)
Average molecular weight	320
Pseudocritical temperature	512°C (953°F)
Pseudocritical pressure	13.2 bar (191 psia)
Pseudocritical density	258 kg/m3 (16.1 lb/ft3)
Moisture content, maximum (ASTM E-203)	150 ppm
Dielectric constant @ 23°C (ASTM D-924)	2.23

^aThese data are based on samples tested in the laboratory and are not guaranteed for all samples. Contact us for complete sales specifications for Therminol 55 fluid. Does not constitute an express warranty. See disclaimer on the back page of this bulletin.

To create your own customized table

with preferred properties, units of measure, and temperature intervals, visit WWW.therminol.com/resources and download the Therminol heat transfer fluid calculator.

For the technical service contact in your region, visit the CONTACT US page on our website, www.therminol.com.

Liquid properties of Therminol[®] 55 heat transfer fluid by temperature^a (SI units)

Toma		Liquid	Liquid heat	Heat of	Liquid	Liquid thermal	1	incoder	Vapor
°c		lea/m ³	capacity	vaporization ki/ka	enunaipy-			rscosity-	pressure-
_78	-18	90.4	1 73	418.0	_18.8	0.1340	1820	2010	КГd
_20	_1	899	1.75	/12.0	_3.9	0.1331	756	8/1	
_10	1/1	892	1.70	405.0	13.9	0.1319	309	3//6	
0	32	885	1.83	398.1	32.0	0.1307	1/13	162	
10	50	878	1.87	391.3	50.6	0.1296	73.8	84.0	
20	68	872	1.07	384.6	69.4	0.1250	41.6	47.7	
30	86	865	1.94	377.9	88.7	0.1204	25.2	29.2	
40	104	858	1 98	371.4	108.3	0.1261	16.3	19.0	_
50	172	852	2 01	364.9	128.2	0 1249	11.1	13.1	
60	140	845	2.05	358.5	148.5	0.1238	7.93	9.39	
70	158	838	2.08	352.2	169.2	0.1226	5.89	7.02	
80	176	831	2.12	345.9	190.2	0.1214	4.52	5.43	0.011
90	194	825	2.16	339.8	211.6	0.1203	3.56	4.32	0.019
100	212	818	2.19	333.7	233.3	0.1191	2.88	3.52	0.032
110	230	811	2.23	327.8	255.4	0.1179	2.38	2.93	0.054
120	248	804	2.26	321.8	277.9	0.1168	2.00	2.49	0.088
130	266	797	2.30	316.0	300.7	0.1156	1.71	2.14	0.140
140	284	790	2.33	310.2	323.8	0.1144	1.48	1.87	0.219
150	302	784	2.37	304.5	347.3	0.1133	1.29	1.65	0.334
160	320	777	2.40	298.8	371.2	0.1121	1.14	1.47	0.501
170	338	770	2.44	293.2	395.4	0.1109	1.02	1.32	0.738
180	356	763	2.47	287.7	420.0	0.1098	0.913	1.20	1.07
190	374	755	2.51	282.2	444.9	0.1086	0.825	1.09	1.53
200	392	748	2.54	276.7	470.1	0.1074	0.749	1.00	2.15
210	410	741	2.58	271.3	495.7	0.1062	0.683	0.921	2.98
220	428	734	2.61	265.9	521.7	0.1051	0.625	0.852	4.07
230	446	726	2.65	260.5	548.0	0.1039	0.574	0.790	5.51
240	464	719	2.68	255.1	574.7	0.1027	0.528	0.735	7.37
250	482	711	2.72	249.7	601.7	0.1015	0.488	0.686	9.76
260	500	704	2.75	244.3	629.1	0.1004	0.451	0.641	12.8
270	518	696	2.79	239.0	656.8	0.0992	0.418	0.600	16.6
280	536	688	2.83	233.5	684.9	0.0980	0.387	0.563	21.3
290	554	680	2.86	228.1	713.3	0.0968	0.360	0.529	27.2
300	572	672	2.90	222.6	742.1	0.0957	0.334	0.497	34.4
310	590	663	2.93	217.1	771.2	0.0945	0.311	0.468	43.1
320	608	655	2 97	211.5	800.7	0.0933	0.289	0.441	52.7

¹Maximum recommended bulk temperature 290°C (550°F). These data are based on samples tested in the laboratory and are not guaranteed for all samples. Contact us for complete sales specifications for Therminol 55 fluid. ¹Liquid enthal py basis is –17.8°C (0°F). ¹C (51 = 1 mm²/s and 1 mPas = 1 cP. ⁴100 kPa = 1 bar. ⁴Maximum extended use temperature is 315°C (600°F).

ANEXO N° 12 – Turbina de Vapor

Predesigned Steam Turbine SST-040

Power Output: 75-300 kW

The newly developed predesigned steam turbine SST-040 is a generator drive specially designed for the 75-300 kW power range. This favorably priced turbine features a simple, extremely compact design, short start-up times and a high degree of operational reliability.

Pre-designed steam turbine SST-040

The SST-040 is used as a condensing turbine in decentralized solar facilities or for waste-heat recovery, e.g. used behind gas engines and biogas engines. As a backpressure turbine it is used in small combined heat and power (CHP) plants as well as in decentralized plants to generate process heat and electrical power. The turbine is capable of rapid-starting i.e. it can be started from cold without preheating. When not enough live steam is supplied anymore or the live steam supply ends, the turbine will switch off automatically.

Application area

- Waste-heat recovery
- Small CHP plants
- Decentralized solar facilities

Industrial Steam Turbines

Answers for energy.

SIEMENS

Turbine design

The SST-040 is a single-stage impulse turbine. The inlet steam flow is directed onto the turbine rotor blades, where mechanical power is generated when the steam flow direction changes. The resulting impulse spins the rotor, and the power is transferred from the turbine via the gear to the generator.

The SST-040 steam turbine is delivered as a pre-tested turbo generator package-unit.

The control and operating unit with a 12-inch touch panel covers all necessary monitoring functions.

Turbine

The turbine casing is centrically slide-mounted on the bearing casing to permit free radial movements under influence of different temperatures. The vertical split allows easy access to the rotor disk. The quick acting inlet valve for steam control and quick-stop is opened and closed by a pneumatically controlled servomotor. The casing is thermally insulated by zinc-coated mineral wool lagging.

Gear

The design of the integral gear, manufactured in our Siemens workshop, was chosen to fit perfectly to the design of the turbine. The gear box includes the pressure-lubricated sleeve bearings and the gearwheels. Ground gearing and tooth contact pattern adjustment during assembly guarantee extremely low vibration levels and low noise.

Oil unit

The integrated oil supply consists of an auxiliary oil pump with electric start-motor, a mechanically driven main oil pump, an exchangeable duplex oil filter and air-cooled oil cooler.

Generator

A highly efficient low-voltage motor is used for power generation in generator mode. Optimally adjusted to a particular power range, mechanical power is converted into electrical power. For protection, thermocouples or electronic resistance temperature detectors (RTDs) monitor the temperature of the bearings and windings.

Monitoring and power circuit breaker

The control and protection unit covers all necessary monitoring functions. A clearly arranged 12-inch touch panel shows all relevant data. For data transmission to an existing external control system, the control and protection unit is equipped with a Profibus interface.

The circuit breaker with motor drive and subvoltage release establishes the connection with the power network.

Base frame

The SST-040 steam turbine is delivered as a pre-tested packageunit with turbine, gear, generator, oil unit, control and protection unit as well as circuit breaker, built upon a base frame. The lightweight turbine package has a space requirement of approx. $1.5m \times 2.5m \times 2m$ (breadth x length x height) and a weight of around 4,500 kg.

REPOSITORIO DE TESIS UCSM

Technical Data

Technical Data

- Power output : 75–300 kW (e)
- Inlet pressure: 2 up to 40 bar (a)
- Inlet temperature: dry saturated steam up to 400°C
- Exhaust pressure: max. 7 bar (a) up to 0,1 bar (a) condensation
- Dimensions: 1.5m x 2.5m x 2m (breadth x length x height)
- Weight: approx. 4,500 kg

The turbine casing is heat-insulated and centrically slide-mounted on the bearing casing.

Advantages

- Minimal foundation work thanks to small and compact design
- Largely maintenance-free due to stalwart, robust construction
- High availability thanks to resilient and sure technology
- Quick start without preheating of the turbine due to minimized gyrating masses
- Favorably priced thanks to proven components
- Quick development and commissioning due to productionorientated design

Installation, control and maintenance

Our processes in the areas of sales, development, production, commissioning and service are specially planned and structured so that we can install the unit in the shortest possible time.

The SST-040 turbogenerator package is completely approved and installed in the Siemens test bay, enabling easy, problemfree installation on a base plate or small concrete foundation.

The installation and the connection to the steam pipes and to the electrical grid can be carried out by our customers themselves with the help of our guidelines. A Siemens technician will put the turbine into operation a few days later. The complete unit is designed to be simple and reliable, so that power generation can normally begin only six months after placing the order with Siemens.

Service

Customer Service is for us more than just a concept, it is a way of life. If you have any questions about your unit, modification requirements or if you should experience an operational disturbance, Siemens Frankenthal is at your service around the clock with its hotline +49 171 51 82 610 – wherever the location of your unit.

Speak to us, and we will gladly advise you:

Siemens Frankenthal Telefon: +49 6233 85-22 91 Telefax: +49 6233 85-26 60 E-Mail: turbines.frt.energy@siemens.com

The installation of the turbine can be carried out by the customers themselves.

Criteria for capital investment decision

Siemens has been manufacturing predesigned steam turbines in Frankenthal for more than 80 years. These turbines are known worldwide for the best quality at reasonable prices. With the new, reliable steam turbine SST-040 customers are able to use "hidden" power sources like small amounts of waste heat.

Important reasons for planning own power generation:

- Increased efficiency of biogas plants by using the waste heat of the gas engine for additional power generation (combined cycle)
- Generation of CHP in breweries, in dairies, in paper industry or for drying processes
- Stabilization of the power provision by using peak current
- Allocation of governmental cogeneration subsidies in certain countries for fuel input and power output
- Utilization of small amounts of waste-heat (1000 up to 3000 kW thermal) with low exhaust gas temperatures (from 150°C) for power generation

Published and copyright © 2011: Siemens AG Energy Sector Freyeslebenstrasse 1 91058 Erlangen, Germany

Siemens AG, Energy Sector Oil & Gas Division Wolfgang-Reuter-Platz 47053 Duisburg, Germany Siemens Turbomachinery Equipment GmbH Heßheimer Straße 2 67227 Frankenthal (Pfalz), Germany

For more information, please contact our Customer Support Center. Phone: +49 180 524 70 00 Fax: +49 180 524 24 71 (Charges depending on provider) E-mail: support.energy@siemens.com Oil & Gas Division Order No. E50001-W410-A113-X-4A00 Printed in Germany Dispo 34806, c4bs 7477 bdk 110034 P WS 05112.5

Printed on elementary chlorine-free bleached paper. All rights reserved. Trademarks mentiones in this document are the property of Siemens AG, its affiliates or their respective owners.

Subject to change without prior notice. The information in this document contains general descriptions of the technical options available, which may not apply in all cases. The required technical options should therefore be specified in the contract.

www.siemens.com/energy

UNIVERSIDAD Católica De Santa María

ANEXO Nº 13 – Generador Eléctrico

REV 5 20.05.15

G2R 250 LB/4

200 kVA - 50 Hz

225 kVA - 60 Hz

Características Técnicas - - Technical Characteristics Según normas - - According to: IEC 34-1 CEI 2-3 VDE 0530 UTE NF C 51-100-111 BS 4999

Aislación clase - Insulation class	Н	Rodamiento L.A D.E. Bearing	6211-2RS-C3
Protección - Enclosure	IP23	Rodamiento L.O.A - O.D.E Bearing	6214-2RS-C3
Cosφ - Power factor	0,8	Caudal de aire - Air Flow:	(50Hz:50m ³ /1')
Altura - Altitude	≤ 1000 m		(60Hz:60m ³ /1')
Sobrevelocidad - Overspped	2160 rpm	Peso alternador - Alternator weight	615 kg
Sistema de excitación - Excitation system	brushless	Peso estator completo - Stator weight	386 kg
Sistema de regulación - Regulation system	A.V.R.	Peso rotor completo - Rotor weight	229 kg
Precisión tensión - Voltage accuracy	± 0,5%	Resist. fase - Estator winding resist.20°C	0,027Ω
Paso de arrollamiento - Winding pitch	2/3	Resist. Rotor - Rotor resist. 20°C	4,01Ω
Distorsión armónica - Harmonic residual	≤ 5%	Resist. Estator excit - Excit.stator resist.	9,2 Ω
Número de terminales - Number of leads	12	Resist. Rotor excit Excit. Rotor resist.	0.230
Sobrecarga - Overload	10%(1Hora)	Constante de tiempo - Time constant T'do	1.5S
Radio interferencia - Radio interference	G-VDE 0875	Constante de tiempo - Time constant T'd	60mS
Corriente de cortocircuito - Short circuit current	>3,5In	Constante de tiempo - Time constant T"d	11.8mS
Relación de cortocircuito - Short circuit ratio	kcc 0.59	Constante de tiempo - Time constant Ta	9.5mS

Conexionados - Arrangements:		. 50	Hz				60 Hz		
Tensión - voltage: estrella serie-series star	380	400	415	440	380	416	440	460	480
Tensión - voltage: estrella paral-paral star	190	200	207	220	190	208	220	230	240
Tensión - voltage: triang.seriel.delta series	220	231	240	254	220	240	254	266	277
Tensión - voltage: triang.paral-paral.delta	110	115	120	127	110	120	127	133	138
Pot Power: Continuous kVA S1 (cl.H - 40°C)	200	200	190.0	(1)	210	215	225	225	225
Pot Power: Stand By kVA S1 (cl.H - 40°C)	220	220	209.0	(1)	230	235	255	255	255
Xd	212,7	192	179	-	259	248	229	209	192
X'd	13,6	12,3	11,4	-	17,1	15,8	14,6	13,4	12,3
Reactancia-Reactances %(S1-cl.F-40°C) X"d	7,2	6,5	6,0	-	8,9	8,4	7,7	7,1	6,5
Xq	118	106	99	-	148,6	137	126,1	116	106
X2	17,1	15,4	14,3	-	21,1	19,8	18,3	16,8	15,4
X0	2,9	2,6	2,4	-	3,4	3,3	3,1	2,8	2,6
Tensión monofásica - Voltage monophase	220	230	240	254	220	240	254	266	277
Potencia monofásica - Power monophase	130	130	124	(1)	156	156	156	156	156

⁽¹⁾ ONLY BY REQUEST

S1 - cl. F - 40°C - 400/440 ∨		50 Hz			60 Hz		
		2/4	3/4	4/4	2/4	3/4	4/4
Cosφ 0,8	n%	93.2	94.0	93.6	93.4	94	93.5
	I Excit. (A)	3.0	3.9	5.1	2.3	3.8	4.7
Cosφ 1	n%	94.3	94.7	94.3	94.2	94.7	94.2
	I Excit. (A)	2.0	2.6	3.7	2.0	3.0	3.8

PLANOS

- Plano N° 1 Tubo Absorbente
- Plano Nº 2 Tubo Metálico
- Plano N° 3 Cubierta Exterior
- Plano Nº 4 Unión Cubierta Exterior
- Plano Nº 5 Fuelle Metálico
- Plano Nº 6 Unión Tubo Metálico

